Sandwich "Ion Pool"-Structured Power Gating for Salinity Gradient Generation Devices

被引:20
|
作者
Fu, Lulu [1 ]
Wang, Yuting [1 ]
Jiang, Jiaqiao [1 ]
Lu, Bingxin [1 ]
Zhai, Jin [1 ]
机构
[1] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Key Lab Bioinspired Smart Interfacial Sci & Techn, Minist Educ,Sch Chem, Beijing 100191, Peoples R China
基金
北京市自然科学基金;
关键词
ion pool; pH responsive; confinement effect; power gating; salinity gradient power generation; OSMOTIC ENERGY-CONVERSION; HETEROGENEOUS MEMBRANE; NANOFLUIDIC DIODE; PERFORMANCE; RECTIFICATION; TRANSPORT; SELECTIVITY;
D O I
10.1021/acsami.1c10183
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanoconfinement ion transport, similar to that of biological ion channels, has attracted widespread research interest and offers prospects for broad applications in energy conversion and nanofluidic diodes. At present, various methods were adopted to improve the rectification performance of nanofluidic diodes including geometrical, chemical, and electrostatic asymmetries. However, contributions of the confinement effects within the channels were neglected, which can be a crucial factor for ion rectification behavior. In this research, we report an "ion pool"-structured nanofluidic diode to improve the confinement effect of the system, which was constructed based on an anodic aluminum oxide (AAO) nanoporous membrane sandwiched between zeolitic imidazolate framework 8 (ZIF-8) and tungsten oxide (WO3) thin membranes. A high rectification ratio of 192 is obtained through this nanofluidic system due to ions could be enriched or depleted sufficiently within the ion pool. Furthermore, this high-rectification-ratio ion pool-structured nanofluidic diode possessed pH-responsive and excellent ion selectivity. We developed it as a pH-responsive power gating for a salinity gradient harvesting device by controlling the surface charge density of the ion pool nanochannel narrow ends with different pH values, and hence, the ionic gate is switched between On and Off states, with a gating ratio of up to 27, which exhibited 8 times increase than ZIF-8-AAO and AAO-WO3 composite membranes. Significantly, the peculiar ion pool structure can generate high rectification ratios due to the confinement effect, which then achieves high gating ratios. Such ion pool-structured nanochannels created new avenues to design and optimize nanofluidic diodes and boosted their applications in energy conversion areas.
引用
收藏
页码:35197 / 35206
页数:10
相关论文
共 50 条
  • [21] Energy generation and storage by salinity gradient power: A model-based assessment
    Jalili, Zohreh
    Krakhella, Kjersti Wergeland
    Einarsrud, Kristian Etienne
    Burheim, Odne Stokke
    JOURNAL OF ENERGY STORAGE, 2019, 24
  • [22] Power Generation from Salinity Gradient by Reverse Electrodialysis in Silicon Nitride Nanopores
    Ma, Jian
    Zeng, Qingyu
    Zhan, Lijian
    Mo, Jingwen
    Zhang, Yan
    Ni, Zhonghua
    NANO, 2020, 15 (11)
  • [23] Reverse electrodialysis in bilayer nanochannels: salinity gradient-driven power generation
    Long, Rui
    Kuang, Zhengfei
    Liu, Zhichun
    Liu, Wei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (10) : 7295 - 7302
  • [24] High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation
    Gao, Jun
    Guo, Wei
    Feng, Dan
    Wang, Huanting
    Zhao, Dongyuan
    Jiang, Lei
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (35) : 12265 - 12272
  • [25] Engineered Sulfonated Polyether Sulfone Nanochannel Membranes for Salinity Gradient Power Generation
    Huang, Xiaodong
    Pang, Jinhui
    Zhou, Teng
    Jiang, Lei
    Wen, Liping
    ACS APPLIED POLYMER MATERIALS, 2021, 3 (01): : 485 - 493
  • [26] Sodium-ion concentration flow cell stacks for salinity gradient energy recovery: Power generation of series and parallel configurations
    Whiddon, Elizabeth
    Zhu, Haihui
    Zhu, Xiuping
    JOURNAL OF POWER SOURCES, 2019, 435
  • [27] Power generation enhancement in a salinity-gradient solar pond power plant using thermoelectric generator
    Ziapour, Behrooz M.
    Saadat, Mohammad
    Palideh, Vahid
    Afzal, Sadegh
    ENERGY CONVERSION AND MANAGEMENT, 2017, 136 : 283 - 293
  • [28] Role of two different pretreatment methods in osmotic power (salinity gradient energy) generation
    Abbasi-Garravand, Elham
    Mulligan, Catherine N.
    Laflamme, Claude B.
    Clairet, Guillaume
    RENEWABLE ENERGY, 2016, 96 : 98 - 119
  • [29] Blue energy: Current technologies for sustainable power generation from water salinity gradient
    Jia, Zhijun
    Wang, Baoguo
    Song, Shiqiang
    Fan, Yongsheng
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 31 : 91 - 100
  • [30] Construction of a Liquid Membrane Cell for Power Generation Based on Salinity Gradient Energy Conversion
    Yamada, Yusuke
    Kitazumi, Yuki
    Kano, Kenji
    Shirai, Osamu
    CHEMISTRY LETTERS, 2020, 49 (09) : 1081 - 1083