On triangle-free projective graphs

被引:8
|
作者
Hazan, S [1 ]
机构
[1] INST POLITECN NACL,CTR INVEST & ESTUDIOS AVANZADOS,DEPT MATEMAT,MEXICO CITY 07000,DF,MEXICO
关键词
D O I
10.1007/BF01195494
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The 2-projection property was introduced by Corominas for ordered sets; it was generalized to other structures and arities by Pouzet, Rosenberg and Stone and independently by Davey, McKenzie, Nation and Palfy. We investigate triangle-free projective graphs and give a characterization for graphs that satisfy a certain condition on their cycles. In those cases, projectivity is equivalent to quasiprojectivity. As a corollary, we obtain a characterization of projective orders of height 1.
引用
收藏
页码:185 / 196
页数:12
相关论文
共 50 条
  • [31] Flexibility of triangle-free planar graphs
    Dvorak, Zdenek
    Masarik, Tomas
    Musilek, Jan
    Pangrac, Ondrej
    JOURNAL OF GRAPH THEORY, 2021, 96 (04) : 619 - 641
  • [32] On existentially complete triangle-free graphs
    Shoham Letzter
    Julian Sahasrabudhe
    Israel Journal of Mathematics, 2020, 236 : 591 - 601
  • [33] A note on triangle-free and bipartite graphs
    Prömel, HJ
    Schickinger, T
    Steger, A
    DISCRETE MATHEMATICS, 2002, 257 (2-3) : 531 - 540
  • [34] An invariant for minimum triangle-free graphs
    Kruger, Oliver
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 74 : 371 - 388
  • [35] Coloring triangle-free graphs on surfaces
    Dvorak, Zdenek
    Kral, Daniel
    Thomas, Robin
    PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 120 - +
  • [36] Colouring Vertices of Triangle-Free Graphs
    Dabrowski, Konrad
    Lozin, Vadim
    Raman, Rajiv
    Ries, Bernard
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2010, 6410 : 184 - 195
  • [37] Triangle-Free Subgraphs of Random Graphs
    Allen, Peter
    Bottcher, Julia
    Kohayakawa, Yoshiharu
    Roberts, Barnaby
    COMBINATORICS PROBABILITY & COMPUTING, 2018, 27 (02): : 141 - 161
  • [38] CONTRACTILE EDGES IN TRIANGLE-FREE GRAPHS
    EGAWA, Y
    ENOMOTO, H
    SAITO, A
    COMBINATORICA, 1986, 6 (03) : 269 - 274
  • [39] Eigenvalue multiplicity in triangle-free graphs
    Rowlinson, Peter
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 493 : 484 - 493
  • [40] Coloring triangle-free graphs on surfaces
    Dvorak, Zdenek
    Kral, Daniel
    Thomas, Robin
    ALGORITHMS AND COMPUTATION, 2007, 4835 : 2 - +