On generalized strongly modified h-convex functions

被引:13
|
作者
Zhao, Taiyin [1 ]
Saleem, Muhammad Shoaib [2 ]
Nazeer, Waqas [3 ]
Bashir, Imran [2 ]
Hussain, Ijaz [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu, Peoples R China
[2] Univ Okara, Dept Math, Okara, Pakistan
[3] Govt Coll Univ, Dept Math, Lahore, Pakistan
关键词
h-convex function; Modified h-convex function; Schur-type inequality; Hermite-Hadamard inequality; Fejer-type inequality; INEQUALITIES;
D O I
10.1186/s13660-020-2281-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive some properties and results for a new extended class of convex functions, generalized strongly modified h-convex functions. Moreover, we discuss Schur-type, Hermite-Hadamard-type, and Fejer-type inequalities for this class. The crucial fact is that this extended class has awesome properties similar to those of convex functions.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Lipschitz continuity, Aleksandrov theorem and characterizations for H-convex functions
    Valentino Magnani
    Mathematische Annalen, 2006, 334 : 199 - 233
  • [32] Weighted fractional inequalities for new conditions on h-convex functions
    Benaissa, Bouharket
    Azzouz, Noureddine
    Budak, Huseyin
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [33] Petrovic-Type Inequalities for Harmonic h-convex Functions
    Baloch, Imran Abbas
    Chu, Yu-Ming
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [34] Lipschitz continuity, Aleksandrov theorem and characterizations for H-convex functions
    Magnani, V
    MATHEMATISCHE ANNALEN, 2006, 334 (01) : 199 - 233
  • [35] Some new Hermite-Hadamard-type inequalities for strongly h-convex functions on co-ordinates
    Hong, Weizhi
    Xu, Yanran
    Ruan, Jianmiao
    Ma, Xinsheng
    OPEN MATHEMATICS, 2024, 22 (01):
  • [36] Jensen–Mercer Type Inequalities for Operator h-Convex Functions
    Mostafa Abbasi
    Ali Morassaei
    Farzollah Mirzapour
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 2441 - 2462
  • [37] Trapezoidal type inequalities related to h-convex functions with applications
    M. Rostamian Delavar
    S. S. Dragomir
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1487 - 1498
  • [38] On Some New Inequalities of Hadamard Type for h-Convex Functions
    Akdemir, Ahmet Ocak
    Set, Erhan
    Ozdemir, M. Emin
    Yildiz, Cetin
    FIRST INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2012), 2012, 1470 : 35 - 38
  • [39] BERNSTEIN-DOETSCH TYPE RESULTS FOR h-CONVEX FUNCTIONS
    Hazy, Attila
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (03): : 499 - 508
  • [40] ON STRONGLY (p, h)-CONVEX FUNCTIONS
    Awan, Muhammad Uzair
    Noor, Muhammad Aslam
    Set, Erhan
    Mihai, Marcela, V
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, 10 (02): : 145 - 153