Developing Real-Time Scheduling Policy by Deep Reinforcement Learning

被引:6
|
作者
Bo, Zitong [1 ,2 ]
Qiao, Ying [1 ]
Leng, Chang [1 ]
Wang, Hongan [1 ]
Guo, Chaoping [1 ]
Zhang, Shaohui [3 ]
机构
[1] Chinese Acad Sci, Inst Software, Beijing Key Lab Human Comp Interact, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Beijing Natl Speed Skating Oval Operat Co Ltd, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
real-time scheduling; reinforcement learning; multiprocessor system; deep neural network;
D O I
10.1109/RTAS52030.2021.00019
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Designing scheduling policies for multiprocessor real-time systems is challenging since the multiprocessor scheduling problem is NP-complete. The existing heuristics are customized policies that may achieve poor performance under some specific task loads. Thus, a new design pattern is needed to make the multiprocessor scheduling policies perform well under various task loads. In this paper, we investigate a new real-time scheduling policy based on reinforcement learning. For any given real-time task set, our policy can automatically derive a high performance by online learning. Specifically, we model the real-time scheduling process as a multi-agent cooperative game and propose multi-agent self-cooperative learning that overcomes the curse of dimensionality and credit assignment problems. Simulation results show that our approach can learn high-performance policies for various task/system models.
引用
收藏
页码:131 / 142
页数:12
相关论文
共 50 条
  • [41] Real-time security margin control using deep reinforcement learning
    Hagmar, Hannes
    Eriksson, Robert
    Tuan, Le Anh
    ENERGY AND AI, 2023, 13
  • [42] Real-Time Defensive Strategy Selection via Deep Reinforcement Learning
    Charpentier, Axel
    Neal, Christopher
    Boulahia-Cuppens, Nora
    Cuppens, Frederic
    Yaich, Reda
    18TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY & SECURITY, ARES 2023, 2023,
  • [43] Deep Reinforcement Learning for Real-Time Energy Management in Smart Home
    Wei, Guixi
    Chi, Ming
    Liu, Zhi-Wei
    Ge, Mingfeng
    Li, Chaojie
    Liu, Xianggang
    IEEE SYSTEMS JOURNAL, 2023, 17 (02): : 2489 - 2499
  • [44] Realizing a deep reinforcement learning agent for real-time quantum feedback
    Kevin Reuer
    Jonas Landgraf
    Thomas Fösel
    James O’Sullivan
    Liberto Beltrán
    Abdulkadir Akin
    Graham J. Norris
    Ants Remm
    Michael Kerschbaum
    Jean-Claude Besse
    Florian Marquardt
    Andreas Wallraff
    Christopher Eichler
    Nature Communications, 14 (1)
  • [45] Deep Reinforcement Learning for Green Security Games with Real-Time Information
    Wang, Yufei
    Shi, Zheyuan Ryan
    Yu, Lantao
    Wu, Yi
    Singh, Rohit
    Joppa, Lucas
    Fang, Fei
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 1401 - 1408
  • [46] Real-Time Energy Management of a Microgrid Using Deep Reinforcement Learning
    Ji, Ying
    Wang, Jianhui
    Xu, Jiacan
    Fang, Xiaoke
    Zhang, Huaguang
    ENERGIES, 2019, 12 (12)
  • [47] Realizing a deep reinforcement learning agent for real-time quantum feedback
    Reuer, Kevin
    Landgraf, Jonas
    Foesel, Thomas
    O'Sullivan, James
    Beltran, Liberto
    Akin, Abdulkadir
    Norris, Graham J.
    Remm, Ants
    Kerschbaum, Michael
    Besse, Jean-Claude
    Marquardt, Florian
    Wallraff, Andreas
    Eichler, Christopher
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [48] Deep Reinforcement Learning for Real-Time Trajectory Planning in UAV Networks
    Li, Kai
    Ni, Wei
    Tovar, Eduardo
    Guizani, Mohsen
    2020 16TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE, IWCMC, 2020, : 958 - 963
  • [49] Real-Time Microgrid Energy Scheduling Using Meta-Reinforcement Learning
    Shen, Huan
    Shen, Xingfa
    Chen, Yiming
    ENERGIES, 2024, 17 (10)
  • [50] A Study on Real-time Scheduling for Holonic Manufacturing Systems - Application of Reinforcement Learning
    Iwamura, Koji
    Mayumi, Norihisa
    Tanimizu, Yoshitaka
    Sugimura, Nobuhiro
    SERVICE ROBOTICS AND MECHATRONICS, 2010, : 201 - 204