Developing Real-Time Scheduling Policy by Deep Reinforcement Learning

被引:6
|
作者
Bo, Zitong [1 ,2 ]
Qiao, Ying [1 ]
Leng, Chang [1 ]
Wang, Hongan [1 ]
Guo, Chaoping [1 ]
Zhang, Shaohui [3 ]
机构
[1] Chinese Acad Sci, Inst Software, Beijing Key Lab Human Comp Interact, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Beijing Natl Speed Skating Oval Operat Co Ltd, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
real-time scheduling; reinforcement learning; multiprocessor system; deep neural network;
D O I
10.1109/RTAS52030.2021.00019
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Designing scheduling policies for multiprocessor real-time systems is challenging since the multiprocessor scheduling problem is NP-complete. The existing heuristics are customized policies that may achieve poor performance under some specific task loads. Thus, a new design pattern is needed to make the multiprocessor scheduling policies perform well under various task loads. In this paper, we investigate a new real-time scheduling policy based on reinforcement learning. For any given real-time task set, our policy can automatically derive a high performance by online learning. Specifically, we model the real-time scheduling process as a multi-agent cooperative game and propose multi-agent self-cooperative learning that overcomes the curse of dimensionality and credit assignment problems. Simulation results show that our approach can learn high-performance policies for various task/system models.
引用
收藏
页码:131 / 142
页数:12
相关论文
共 50 条
  • [31] Real-time scheduling for a smart factory using a reinforcement learning approach
    Shiue, Yeou-Ren
    Lee, Ken-Chuan
    Su, Chao-Ton
    COMPUTERS & INDUSTRIAL ENGINEERING, 2018, 125 : 604 - 614
  • [32] Real-time power scheduling through reinforcement learning from demonstrations
    Liu, Shaohuai
    Liu, Jinbo
    Yang, Nan
    Huang, Yupeng
    Jiang, Qirong
    Gao, Yang
    ELECTRIC POWER SYSTEMS RESEARCH, 2024, 235
  • [33] Optimal real-time scheduling of battery operation using reinforcement learning
    Juarez, Carolina Quiroz
    Musilek, Petr
    2021 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2021,
  • [34] Real-Time Scheduling of Operational Time for Smart Home Appliances Based on Reinforcement Learning
    Khan, Murad
    Seo, Junho
    Kim, Dongkyun
    IEEE ACCESS, 2020, 8 : 116520 - 116534
  • [35] Real-time production scheduling using a deep reinforcement learning-based multi-agent approach
    Taghipour, Sharareh
    Namoura, Hamed A.
    Sharifi, Mani
    Ghaleb, Mageed
    INFOR, 2024, 62 (02) : 186 - 210
  • [36] Real-Time Scheduling of Pumps in Water Distribution Systems Based on Exploration-Enhanced Deep Reinforcement Learning
    Hu, Shiyuan
    Gao, Jinliang
    Zhong, Dan
    Wu, Rui
    Liu, Luming
    SYSTEMS, 2023, 11 (02):
  • [37] Real-Time Scheduling for Dynamic Partial-No-Wait Multiobjective Flexible Job Shop by Deep Reinforcement Learning
    Luo, Shu
    Zhang, Linxuan
    Fan, Yushun
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (04) : 3020 - 3038
  • [38] Real-time scheduling for two-stage assembly flowshop with dynamic job arrivals by deep reinforcement learning
    Chen, Jian
    Zhang, Hanlei
    Ma, Wenjing
    Xu, Gangyan
    ADVANCED ENGINEERING INFORMATICS, 2024, 62
  • [39] Electric vehicle clusters scheduling strategy considering real-time electricity prices based on deep reinforcement learning
    Wang, Kang
    Wang, Haixin
    Yang, Junyou
    Feng, Jiawei
    Li, Yunlu
    Zhang, Shiyu
    Okoye, Martin Onyeka
    ENERGY REPORTS, 2022, 8 : 695 - 703
  • [40] Real-time and concurrent optimization of scheduling and reconfiguration for dynamic reconfigurable flow shop using deep reinforcement learning
    Yang, Shengluo
    Wang, Junyi
    Xin, Liming
    Xu, Zhigang
    CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY, 2023, 40 : 243 - 252