An End-to-End System for Unconstrained Face Verification with Deep Convolutional Neural Networks

被引:17
|
作者
Chen, Jun-Cheng [1 ]
Ranjan, Rajeev [1 ]
Kumar, Amit [1 ]
Chen, Ching-Hui [1 ]
Patel, Vishal M. [2 ]
Chellappa, Rama [1 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
[2] Rutgers State Univ, New Brunswick, NJ 08903 USA
关键词
D O I
10.1109/ICCVW.2015.55
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present an end-to-end system for the unconstrained face verification problem based on deep convolutional neural networks (DCNN). The end-to-end system consists of three modules for face detection, alignment and verification and is evaluated using the newly released IARPA Janus Benchmark A (IJB-A) dataset and its extended version Janus Challenging set 2 (JANUS CS2) dataset. The IJB-A and CS2 datasets include real-world unconstrained faces of 500 subjects with significant pose and illumination variations which are much harder than the Labeled Faces in the Wild (LFW) and Youtube Face (YTF) datasets. Results of experimental evaluations for the proposed system on the IJB-A dataset are provided.
引用
收藏
页码:360 / 368
页数:9
相关论文
共 50 条
  • [21] Remote Sensing Airport Detection Based on End-to-End Deep Transferable Convolutional Neural Networks
    Li, Shuai
    Xu, Yuelei
    Zhu, Mingming
    Ma, Shiping
    Tang, Hong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (10) : 1640 - 1644
  • [22] Feature map size selection for fMRI classification on end-to-end deep convolutional neural networks
    Suhaimi, Farahana
    Htike, Zaw Zaw
    INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2018, 5 (08): : 95 - 103
  • [23] An End-To-End Flood Stage Prediction System Using Deep Neural Networks
    Windheuser, L.
    Karanjit, R.
    Pally, R.
    Samadi, S.
    Hubig, N. C.
    EARTH AND SPACE SCIENCE, 2023, 10 (01)
  • [24] An End-To-End Hyperbolic Deep Graph Convolutional Neural Network Framework
    Zhou Y.
    Huo H.
    Hou Z.
    Bu L.
    Wang Y.
    Mao J.
    Lv X.
    Bu F.
    CMES - Computer Modeling in Engineering and Sciences, 2023, 139 (01): : 537 - 563
  • [25] Towards End-to-end Text Spotting with Convolutional Recurrent Neural Networks
    Li, Hui
    Wang, Peng
    Shen, Chunhua
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5248 - 5256
  • [26] Convolutional Dictionary Learning by End-To-End Training of Iterative Neural Networks
    Kofler, Andreas
    Wald, Christian
    Schaeffter, Tobias
    Haltmeier, Markus
    Kolbitsch, Christoph
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1213 - 1217
  • [27] Quaternion Convolutional Neural Networks for End-to-End Automatic Speech Recognition
    Parcollet, Titouan
    Zhang, Ying
    Morchid, Mohamed
    Trabelsi, Chiheb
    Linares, Georges
    De Mori, Renato
    Bengio, Yoshua
    19TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2018), VOLS 1-6: SPEECH RESEARCH FOR EMERGING MARKETS IN MULTILINGUAL SOCIETIES, 2018, : 22 - 26
  • [28] DeepAttest: An End-to-End Attestation Framework for Deep Neural Networks
    Chen, Huili
    Fu, Cheng
    Rouhani, Bita Darvish
    Zhao, Jishen
    Koushanfar, Farinaz
    PROCEEDINGS OF THE 2019 46TH INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA '19), 2019, : 487 - 498
  • [29] End-to-End Protocols and Performance Metrics For Unconstrained Face Recognition
    Duncan, James A.
    Kalka, Nathan D.
    Maze, Brianna
    Jain, Anil K.
    2019 INTERNATIONAL CONFERENCE ON BIOMETRICS (ICB), 2019,
  • [30] END-TO-END OPTIMIZED SPEECH CODING WITH DEEP NEURAL NETWORKS
    Kankanahalli, Srihari
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2521 - 2525