Feature map size selection for fMRI classification on end-to-end deep convolutional neural networks

被引:2
|
作者
Suhaimi, Farahana [1 ]
Htike, Zaw Zaw [1 ]
机构
[1] Int Islamic Univ Malaysia, Fac Engn, Gombak, Malaysia
关键词
Classification; Functional MRI; Deep learning; CNN; Feature map;
D O I
10.21833/ijaas.2018.08.012
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The emergence of convolutional neural networks (CNN) in various fields has also paved numerous ways for advancement in the field of medical imaging. This paper focuses on functional magnetic resonance imaging (fMRI) in the field of neuroimaging. It has high temporal resolution and robust to control or non-control subjects. CNN analysis on structural magnetic resonance imaging (MRI) and fMRI datasets is compared to rule out one of the grey areas in building CNNs for medical imaging analysis. This study focuses on the feature map size selection on fMRI datasets with CNNs where the selected sizes are evaluated for their performances. Although few outstanding studies on fMRI have been published, the availability of diverse previous studies on MRI previous works impulses us to study to learn the pattern of feature map sizes for CNN configuration. Six configurations are analyzed with prominent public fMRI dataset, names as Human Connectome Project (HCP). This dataset is widely used for any type of fMRI classification. With three set of data divisions, the accuracy values for validation set of fMRI classification are assessed and discussed. Despite the fact that only one slice of every 118 subjects' temporal brain images is used in the study, the validation of classification for three training-excluded subjects known as validation set, has proven the need for feature map size selection. This paper emphasizes the indispensable step of selecting the feature map sizes when designing CNN for fMRI classification. In addition, we provide proofs that validation set should consist of distinct subjects for definite evaluation of any model performance. (C) 2018 The Authors. Published by IASE.
引用
收藏
页码:95 / 103
页数:9
相关论文
共 50 条
  • [1] DEEP FMRI: AN END-TO-END DEEP NETWORK FOR CLASSIFICATION OF FMRI DATA
    Riaz, Atif
    Asad, Muhammad
    Al Arif, S. M. Masudur Rahman
    Alonso, Eduardo
    Dima, Danai
    Corr, Philip
    Slabaugh, Greg
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 1419 - 1422
  • [2] Towards End-to-End Speech Recognition with Deep Convolutional Neural Networks
    Zhang, Ying
    Pezeshki, Mohammad
    Brakel, Philemon
    Zhang, Saizheng
    Laurent, Cesar
    Bengio, Yoshua
    Courville, Aaron
    17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 410 - 414
  • [3] SampleCNN: End-to-End Deep Convolutional Neural Networks Using Very Small Filters for Music Classification
    Lee, Jongpil
    Park, Jiyoung
    Kim, Keunhyoung Luke
    Nam, Juhan
    APPLIED SCIENCES-BASEL, 2018, 8 (01):
  • [4] Image Shadow Removal Using End-To-End Deep Convolutional Neural Networks
    Fan, Hui
    Han, Meng
    Li, Jinjiang
    APPLIED SCIENCES-BASEL, 2019, 9 (05):
  • [5] Leukocyte Segmentation via End-to-End Learning of Deep Convolutional Neural Networks
    Lu, Yan
    Fan, Haoyi
    Li, Zuoyong
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: VISUAL DATA ENGINEERING, PT I, 2019, 11935 : 191 - 200
  • [6] Towards End-to-End Speech Recognition with Deep Multipath Convolutional Neural Networks
    Zhang, Wei
    Zhai, Minghao
    Huang, Zilong
    Liu, Chen
    Li, Wei
    Cao, Yi
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PART VI, 2019, 11745 : 332 - 341
  • [7] An End-to-End System for Unconstrained Face Verification with Deep Convolutional Neural Networks
    Chen, Jun-Cheng
    Ranjan, Rajeev
    Kumar, Amit
    Chen, Ching-Hui
    Patel, Vishal M.
    Chellappa, Rama
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, : 360 - 368
  • [8] End-to-End Convolutional Neural Network Feature Extraction for Remote Sensed Images Classification
    Alem, Abebaw
    Kumar, Shailender
    APPLIED ARTIFICIAL INTELLIGENCE, 2022, 36 (01)
  • [9] End-to-End Text Recognition with Convolutional Neural Networks
    Wang, Tao
    Wu, David J.
    Coates, Adam
    Ng, Andrew Y.
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 3304 - 3308
  • [10] End-to-End Hardware Accelerator for Deep Convolutional Neural Network
    Chang, Tian-Sheuan
    2018 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2018,