Operator space entanglement entropy in a transverse Ising chain

被引:135
|
作者
Prosen, Tomaz [1 ]
Pizorn, Iztok [1 ]
机构
[1] Univ Ljubljana, FMF, Dept Phys, SI-1000 Ljubljana, Slovenia
来源
PHYSICAL REVIEW A | 2007年 / 76卷 / 03期
关键词
D O I
10.1103/PhysRevA.76.032316
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The efficiency of time-dependent density matrix renormalization group methods is intrinsically connected to the rate of entanglement growth. We introduce a measure of entanglement in the space of operators and show, for a transverse Ising spin-1/2 chain, that the simulation of observables, contrary to the simulation of typical pure quantum states, is efficient for initial local operators. For initial operators with a finite index in Majorana representation, the operator space entanglement entropy saturates with time to a level which is calculated analytically, while for initial operators with infinite index the growth of operator space entanglement entropy is shown to be logarithmic.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Entanglement Entropy in the Ising Model with Topological Defects
    Roy, Ananda
    Saleur, Hubert
    PHYSICAL REVIEW LETTERS, 2022, 128 (09)
  • [22] Entanglement entropy and negativity in the Ising model with defects
    Rogerson, David
    Pollmann, Frank
    Roy, Ananda
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (06)
  • [23] Entanglement transition in the projective transverse field Ising model
    Lang, Nicolai
    Buechler, Hans Peter
    PHYSICAL REVIEW B, 2020, 102 (09)
  • [24] Fermionic observables in the transverse Ising chain
    Bjornberg, Jakob E.
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (05)
  • [25] Classical Ising chain in transverse field
    Cuccoli, A.
    Taiti, A.
    Vaia, R.
    Verrucchi, P.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) : E477 - E479
  • [26] Target space entanglement entropy
    Mazenc, Edward A. A.
    Ranard, Daniel
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (03)
  • [27] Target space entanglement entropy
    Edward A. Mazenc
    Daniel Ranard
    Journal of High Energy Physics, 2023
  • [28] Operator entanglement entropy of the time evolution operator in chaotic systems
    Zhou, Tianci
    Luitz, David J.
    PHYSICAL REVIEW B, 2017, 95 (09)
  • [29] Entanglement entropy in a periodically driven quantum Ising ring
    Apollaro, Tony J. G.
    Palma, G. Massimo
    Marino, Jamir
    PHYSICAL REVIEW B, 2016, 94 (13)
  • [30] Entanglement entropy as a marker of phase transition in the Ising model
    Chung, Myung-Hoon
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2024, 84 (05) : 356 - 361