Target space entanglement entropy

被引:0
|
作者
Edward A. Mazenc
Daniel Ranard
机构
[1] Stanford University,Stanford Institute for Theoretical Physics
[2] University of Chicago,Enrico Fermi Institute & Kadanoff Center for Theoretical Physics
[3] Massachusetts Institute of Technology,Center for Theoretical Physics
关键词
AdS-CFT Correspondence; M(atrix) Theories; Sigma Models;
D O I
暂无
中图分类号
学科分类号
摘要
We define a notion of target space entanglement entropy. Rather than partitioning the base space on which the theory is defined, we consider partitions of the target space. This is the physical case of interest for first-quantized theories, such as worldsheet string theory. We associate to each subregion of the target space a suitably chosen subalgebra of observables A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document}. The entanglement entropy is calculated as the entropy of the density matrix restricted to A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document}. As an example, we illustrate our framework by computing spatial entanglement in first-quantized many-body quantum mechanics. The algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{A} $$\end{document} is chosen to reproduce the entanglement entropy obtained by embedding the state in the fixed particle sub-sector of the second-quantized Hilbert space. We then generalize our construction to the quantum field-theoretical setting.
引用
收藏
相关论文
共 50 条
  • [1] Target space entanglement entropy
    Mazenc, Edward A. A.
    Ranard, Daniel
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (03)
  • [2] Entanglement entropy in the σ-model with the de Sitter target space
    Vancea, Ion V.
    NUCLEAR PHYSICS B, 2017, 924 : 453 - 476
  • [3] AdS Space from Entanglement Entropy
    Hyun, Seungjoon
    Park, Sang-A
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2019, 75 (11) : 845 - 850
  • [4] Holographic entanglement entropy and the internal space
    Karch, Andreas
    Uhlemann, Christoph F.
    PHYSICAL REVIEW D, 2015, 91 (08):
  • [5] Entanglement entropy in de Sitter space
    Maldacena, Juan
    Pimentel, Guilherme L.
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (02):
  • [6] Entanglement entropy in de Sitter space
    Juan Maldacena
    Guilherme L. Pimentel
    Journal of High Energy Physics, 2013
  • [7] Target space entanglement in Matrix Models
    Harsha R. Hampapura
    Jonathan Harper
    Albion Lawrence
    Journal of High Energy Physics, 2021
  • [8] Target space entanglement in Matrix Models
    Hampapura, Harsha R.
    Harper, Jonathan
    Lawrence, Albion
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (10)
  • [9] Entanglement entropy of α-vacua in de Sitter space
    Sugumi Kanno
    Jeff Murugan
    Jonathan P. Shock
    Jiro Soda
    Journal of High Energy Physics, 2014
  • [10] Entanglement entropy of de Sitter space α-vacua
    Iizuka, Norihiro
    Noumi, Toshifumi
    Ogawa, Noriaki
    NUCLEAR PHYSICS B, 2016, 910 : 23 - 29