Variable Selection of Heterogeneous Spatial Autoregressive Models via Double-Penalized Likelihood

被引:1
|
作者
Tian, Ruiqin [1 ]
Xia, Miaojie [1 ]
Xu, Dengke [2 ]
机构
[1] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
[2] Hangzhou Dianzi Univ, Coll Econ, Hangzhou 310018, Peoples R China
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 06期
关键词
heterogeneous spatial autoregressive models; double-penalized quasi-maximum likelihood; variable selection; SCAD; tuning parameters; STATISTICAL-INFERENCE;
D O I
10.3390/sym14061200
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Heteroscedasticity is often encountered in spatial-data analysis, so a new class of heterogeneous spatial autoregressive models is introduced in this paper, where the variance parameters are allowed to depend on some explanatory variables. Here, we are interested in the problem of parameter estimation and the variable selection for both the mean and variance models. Then, a unified procedure via double-penalized quasi-maximum likelihood is proposed, to simultaneously select important variables. Under certain regular conditions, the consistency and oracle property of the resulting estimators are established. Finally, both simulation studies and a real data analysis of the Boston housing data are carried to illustrate the developed methodology.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Variable selection in linear measurement error models via penalized score functions
    Huang, Xianzheng
    Zhang, Hongmei
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (12) : 2101 - 2111
  • [42] Variable Selection via Generalized SELO-Penalized Cox Regression Models
    SHI Yueyong
    XU Deyi
    CAO Yongxiu
    JIAO Yuling
    JournalofSystemsScience&Complexity, 2019, 32 (02) : 709 - 736
  • [43] Variable selection via generalized SELO-penalized linear regression models
    Shi Yue-yong
    Cao Yong-xiu
    Yu Ji-chang
    Jiao Yu-ling
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2018, 33 (02) : 145 - 162
  • [44] Variable selection via generalized SELO-penalized linear regression models
    Yue-yong Shi
    Yong-xiu Cao
    Ji-chang Yu
    Yu-ling Jiao
    Applied Mathematics-A Journal of Chinese Universities, 2018, 33 : 145 - 162
  • [45] Variable Selection via Generalized SELO-Penalized Cox Regression Models
    Yueyong Shi
    Deyi Xu
    Yongxiu Cao
    Yuling Jiao
    Journal of Systems Science and Complexity, 2019, 32 : 709 - 736
  • [46] Parametric bootstrap and penalized quasi-likelihood inference in conditional autoregressive models
    MacNab, YC
    Dean, CB
    STATISTICS IN MEDICINE, 2000, 19 (17-18) : 2421 - 2435
  • [47] Double Penalized H-Likelihood for Selection of Fixed and Random Effects in Mixed Effects Models
    Xu P.
    Wang T.
    Zhu H.
    Zhu L.
    Statistics in Biosciences, 2015, 7 (1) : 108 - 128
  • [48] Poisson autoregressive process modeling via the penalized conditional maximum likelihood procedure
    Xinyang Wang
    Dehui Wang
    Haixiang Zhang
    Statistical Papers, 2020, 61 : 245 - 260
  • [49] Variable selection for nonparametric spatial additive autoregressive model via deep learning
    Li, Jie
    Song, Yunquan
    STATISTICAL PAPERS, 2025, 66 (03)
  • [50] Poisson autoregressive process modeling via the penalized conditional maximum likelihood procedure
    Wang, Xinyang
    Wang, Dehui
    Zhang, Haixiang
    STATISTICAL PAPERS, 2020, 61 (01) : 245 - 260