Variable Selection of Heterogeneous Spatial Autoregressive Models via Double-Penalized Likelihood

被引:1
|
作者
Tian, Ruiqin [1 ]
Xia, Miaojie [1 ]
Xu, Dengke [2 ]
机构
[1] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
[2] Hangzhou Dianzi Univ, Coll Econ, Hangzhou 310018, Peoples R China
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 06期
关键词
heterogeneous spatial autoregressive models; double-penalized quasi-maximum likelihood; variable selection; SCAD; tuning parameters; STATISTICAL-INFERENCE;
D O I
10.3390/sym14061200
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Heteroscedasticity is often encountered in spatial-data analysis, so a new class of heterogeneous spatial autoregressive models is introduced in this paper, where the variance parameters are allowed to depend on some explanatory variables. Here, we are interested in the problem of parameter estimation and the variable selection for both the mean and variance models. Then, a unified procedure via double-penalized quasi-maximum likelihood is proposed, to simultaneously select important variables. Under certain regular conditions, the consistency and oracle property of the resulting estimators are established. Finally, both simulation studies and a real data analysis of the Boston housing data are carried to illustrate the developed methodology.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Variable Selection in General Frailty Models Using Penalized H-Likelihood
    Ha, Il Do
    Pan, Jianxin
    Oh, Seungyoung
    Lee, Youngjo
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2014, 23 (04) : 1044 - 1060
  • [22] Empirical Likelihood for Spatial Autoregressive Models with Spatial Autoregressive Disturbances
    Qin, Yongsong
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2021, 83 (01): : 1 - 25
  • [23] Variable Selection via Nonconcave Penalized Likelihood in High Dimensional Medical Problems
    Mylona, K.
    Koukouvinos, C.
    Theodoraki, E-M.
    Katsaragakis, S.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2009, 14 (J09): : 1 - 11
  • [24] A Bayesian Variable Selection Method for Spatial Autoregressive Quantile Models
    Zhao, Yuanying
    Xu, Dengke
    MATHEMATICS, 2023, 11 (04)
  • [25] Variable selection for spatial autoregressive models with a diverging number of parameters
    Xie, Tianfa
    Cao, Ruiyuan
    Du, Jiang
    STATISTICAL PAPERS, 2020, 61 (03) : 1125 - 1145
  • [26] Variable selection for spatial autoregressive models with a diverging number of parameters
    Tianfa Xie
    Ruiyuan Cao
    Jiang Du
    Statistical Papers, 2020, 61 : 1125 - 1145
  • [27] PENALIZED MAXIMUM LIKELIHOOD ESTIMATION AND VARIABLE SELECTION IN GEOSTATISTICS
    Chu, Tingjin
    Zhu, Jun
    Wang, Haonan
    ANNALS OF STATISTICS, 2011, 39 (05): : 2607 - 2625
  • [28] Variable Selection for the Spatial Autoregressive Model with Autoregressive Disturbances
    Liu, Xuan
    Chen, Jianbao
    MATHEMATICS, 2021, 9 (12)
  • [29] Orthogonal projection based variable selection for semiparametric spatial autoregressive models
    Zhao, Peixin
    Wu, Hao
    Cheng, Suli
    Yang, Yiping
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (01) : 178 - 189
  • [30] Variable selection and estimation for high-dimensional spatial autoregressive models
    Cai, Liqian
    Maiti, Tapabrata
    SCANDINAVIAN JOURNAL OF STATISTICS, 2020, 47 (02) : 587 - 607