On upper transversals in 3-uniform hypergraphs

被引:0
|
作者
Henning, Michael A. [1 ]
Yeo, Anders [1 ,2 ]
机构
[1] Univ Johannesburg, Dept Pure & Appl Math, ZA-2006 Auckland Pk, South Africa
[2] Univ Southern Denmark, Dept Math & Comp Sci, Campusvej 55, DK-5230 Odense M, Denmark
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2018年 / 25卷 / 04期
基金
新加坡国家研究基金会;
关键词
INDEPENDENT DOMINATION; PARAMETERS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A set S of vertices in a hypergraph H is a transversal if it has a nonempty intersection with every edge of H. The upper transversal number Upsilon(H) of H is the maximum cardinality of a minimal transversal in H. We show that if H is a connected 3-uniform hypergraph of order n, then Upsilon(H) > 1.4855 3 root n - 2. For n sufficiently large, we construct infinitely many connected 3-uniform hypergraphs, H, of order n satisfying Upsilon(H) < 2.5199 3 root n. We conjecture that sup(n ->infinity) (inf Upsilon(H)/3 root n) = 3 root 16, where -F2, the infimum is taken over all connected 3-uniform hypergraphs H of order n.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Transversals and matchings in 3-uniform hypergraphs
    Henning, Michael A.
    Yeo, Anders
    EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (02) : 217 - 228
  • [2] On the number of minimal transversals in 3-uniform hypergraphs
    Lonc, Zbigniew
    Truszczynski, Miroslaw
    DISCRETE MATHEMATICS, 2008, 308 (16) : 3668 - 3687
  • [3] Affine Planes and Transversals in 3-Uniform Linear Hypergraphs
    Henning, Michael A.
    Yeo, Anders
    GRAPHS AND COMBINATORICS, 2021, 37 (03) : 867 - 890
  • [4] Affine Planes and Transversals in 3-Uniform Linear Hypergraphs
    Michael A. Henning
    Anders Yeo
    Graphs and Combinatorics, 2021, 37 : 867 - 890
  • [5] Bounding the Number of Minimal Transversals in Tripartite 3-Uniform Hypergraphs
    Bazin A.
    Beaudou L.
    Kahn G.
    Khoshkhah K.
    Discrete Mathematics and Theoretical Computer Science, 2023, 23 (02):
  • [6] Bounding the Number of Minimal Transversals in Tripartite 3-Uniform Hypergraphs
    Bazin, Alexandre
    Beaudou, Laurent
    Kahn, Giacomo
    Khoshkhah, Kaveh
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2021, 23 (02):
  • [7] Decompositions of complete 3-uniform hypergraphs into small 3-uniform hypergraphs
    Bryant, Darryn
    Herke, Sarada
    Maenhaut, Barbara
    Wannasit, Wannasiri
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 60 : 227 - 254
  • [8] Prime 3-Uniform Hypergraphs
    Boussairi, Abderrahim
    Chergui, Brahim
    Ille, Pierre
    Zaidi, Mohamed
    GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2737 - 2760
  • [9] Prime 3-Uniform Hypergraphs
    Abderrahim Boussaïri
    Brahim Chergui
    Pierre Ille
    Mohamed Zaidi
    Graphs and Combinatorics, 2021, 37 : 2737 - 2760
  • [10] Matchings in 3-uniform hypergraphs
    Kuehn, Daniela
    Osthus, Deryk
    Treglown, Andrew
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2013, 103 (02) : 291 - 305