PERFECT PELL AND PELL-LUCAS NUMBERS

被引:1
|
作者
Bravo, Jhon J. [1 ]
Luca, Florian [2 ]
机构
[1] Univ Cauca, Dept Matemat, Calle 5 4-70, Popayan, Colombia
[2] Univ Witwatersrand, Sch Math, Private Bag X3, ZA-2050 Johannesburg, South Africa
关键词
Perfect numbers; Recurrence sequences; Pell sequences; Pell-Lucas sequences;
D O I
10.1556/012.2019.56.4.1440
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Pell sequence (P-n)(n=0)(infinity) is given by the recurrence P-n = 2P(n) 1+ P-n 2 with initial condition P-0 = 0, P-1 = 1 and its associated Pell-Lucas sequence (Q(n))(n=0)(infinity) is given by the same recurrence relation but with initial condition Q(0) = 2,Q(1) = 2. Here we show that 6 is the only perfect number appearing in these sequences. This paper continues a previous work that searched for perfect numbers in the Fibonacci and Lucas sequences.
引用
收藏
页码:381 / 387
页数:7
相关论文
共 50 条
  • [21] PELL AND PELL-LUCAS POLYNOMIALS
    HORADAM, AF
    MAHON, BJM
    FIBONACCI QUARTERLY, 1985, 23 (01): : 7 - 20
  • [22] A New Generalization of Pell-Lucas Numbers ( Bi-Periodic Pell-Lucas Sequence)
    Uygun, Sukran
    Karatas, Hasan
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (03): : 469 - 479
  • [23] New recurrences on Pell numbers, Pell-Lucas numbers, Jacobsthal numbers, and Jacobsthal-Lucas numbers
    Celik, Songul
    Durukan, Inan
    Ozkan, Engin
    CHAOS SOLITONS & FRACTALS, 2021, 150
  • [24] Pell and Pell-Lucas numbers with only one distinct digit
    Faye, Bernadette
    Luca, Florian
    ANNALES MATHEMATICAE ET INFORMATICAE, 2015, 45 : 55 - 60
  • [25] The Pell and Pell-Lucas Numbers via Square Roots of Matrices
    Arslan, Saadet
    Koken, Fikri
    JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES, 2016, 8 (03): : 159 - 166
  • [26] On the problem of pillai with Pell numbers, Pell-Lucas numbers and powers of 3
    Faye, Bernadette
    Edjeou, Bilizimbeye
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (01) : 71 - 92
  • [27] Pell and Pell-Lucas numbers which are concatenations of three repdigits
    Erduvan, Fatih
    Duman, Merve Guney
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [28] Pell and pell-lucas trees
    Koshy, T. (tkoshy@framingham.edu), 1600, Applied Probability Trust (39):
  • [29] Pell-Lucas Numbers as Sum of Same Power of Consecutive Pell Numbers
    Rihane, Salah Eddine
    Tchammou, Euloge B.
    Togbe, Alain
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (06)
  • [30] PELL AND PELL-LUCAS NUMBERS WHICH ARE CONCATENATIONS OF TWO REPDIGITS
    Duman, Merve Guney
    Erduvan, Fatih
    HONAM MATHEMATICAL JOURNAL, 2023, 45 (04): : 572 - 584