Bisimulation for general stochastic hybrid systems

被引:0
|
作者
Bujorianu, ML [1 ]
Lygeros, J
Bujorianu, MC
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[2] Univ Patras, Dept Elect & Comp Engn, GR-26500 Patras, Greece
[3] Univ Kent, Comp Lab, Canterbury CT2 7NF, Kent, England
来源
HYBRID SYSTEMS: COMPUTATION AND CONTROL | 2005年 / 3414卷
关键词
stochastic hybrid systems; Markov processes; simulation morphism; zigzag morphism; bisimulation; category theory;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we define a bisimulation concept for some very general models for stochastic hybrid systems (general stochastic hybrid systems). The definition of bisimulation builds on the ideas of Edalat and of Larsen and Skou and of Joyal, Nielsen and Winskel. The main result is that this bisimulation for GSHS is indeed an equivalence relation. The secondary result is that this bisimulation relation for the stochastic hybrid system models used in this paper implies the same kind of bisimulation for their continuous parts and respectively for their jumping structures.
引用
收藏
页码:198 / 214
页数:17
相关论文
共 50 条
  • [31] A unifying formulation of the Fokker-Planck-Kolmogorov equation for general stochastic hybrid systems
    Bect, Julien
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2010, 4 (02) : 357 - 370
  • [32] On Hybrid State Estimation for Stochastic Hybrid Systems
    Liu, Weiyi
    Hwang, Inseok
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (10) : 2615 - 2628
  • [33] Stochastic bisimulation for MDPs using reachability analysis
    dos Santos, Felipe Martins
    de Barros, Leliane Nunes
    Holguin, Mijail Gamarra
    2013 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2013, : 213 - 218
  • [34] Backward stochastic bisimulation in CSL model checking
    Sproston, J
    Donatelli, S
    QEST 2004: FIRST INTERNATIONAL CONFERENCE ON THE QUANTITATIVE EVALUATION OF SYSTEMS, PROCEEDINGS, 2004, : 220 - 229
  • [35] Approximate Bisimulation and Discretization of Hybrid CSP
    Yan, Gaogao
    Jiao, Li
    Li, Yangjia
    Wang, Shuling
    Zhan, Naijun
    FM 2016: FORMAL METHODS, 2016, 9995 : 702 - 720
  • [36] A geometric approach to bisimulation and verification of hybrid
    Broucke, M
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 4277 - 4282
  • [37] Bisimulation and cocongruence for probabilistic systems
    Danos, Vincent
    Desharnais, Josee
    Laviolette, Francois
    Panangaden, Prakash
    INFORMATION AND COMPUTATION, 2006, 204 (04) : 503 - 523
  • [38] Decentralized Bisimulation for Multiagent Systems
    Song, Lei
    Feng, Yuan
    Zhang, Lijun
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS (AAMAS'15), 2015, : 209 - 217
  • [40] Model Reduction of Continuous-Time Stochastic Linear Control Systems via Bisimulation Equivalence
    Pola, Giordano
    Manes, Costanzo
    van der Schaft, Arjan J.
    Di Benedetto, Maria Domenica
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 6577 - 6582