A unifying formulation of the Fokker-Planck-Kolmogorov equation for general stochastic hybrid systems

被引:18
|
作者
Bect, Julien [1 ]
机构
[1] Supelec, Dept Signal Proc & Elect Syst, Gif Sur Yvette, France
关键词
Stochastic hybrid systems; Stochastic system with jumps; Markov processes; Fokker-Planck equation; DIFFUSION; MODEL;
D O I
10.1016/j.nahs.2009.07.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A general formulation of the Fokker-Planck-Kolmogorov (FPK) equation for stochastic hybrid systems is presented, within the framework of Generalized Stochastic Hybrid Systems (GSHSs). The FPK equation describes the time evolution of the probability law of the hybrid state. Our derivation is based on the concept of mean jump intensity, which is related to both the usual stochastic intensity (in the case of spontaneous jumps) and the notion of probability current (in the case of forced jumps). This work unifies all previously known instances of the FPK equation for stochastic hybrid systems, and provides GSHS practitioners with a tool to derive the correct evolution equation for the probability law of the state in any given example. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:357 / 370
页数:14
相关论文
共 50 条
  • [1] FOKKER-PLANCK-KOLMOGOROV EQUATION
    SMITH, JR
    [J]. MATRIX AND TENSOR QUARTERLY, 1975, 25 (04): : 150 - &
  • [2] FOKKER-PLANCK-KOLMOGOROV EQUATION
    SMITH, JR
    [J]. MATRIX AND TENSOR QUARTERLY, 1975, 26 (02): : 61 - 62
  • [3] Approximate solution of the Fokker-Planck-Kolmogorov equation
    Di Paola, M
    Sofi, A
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2002, 17 (04) : 369 - 384
  • [4] On the Fundamental Solution of the Fokker-Planck-Kolmogorov Equation
    Chechkin, A. G.
    Shamaev, A. S.
    [J]. DOKLADY MATHEMATICS, 2017, 95 (01) : 55 - 59
  • [5] A stationary Fokker-Planck-Kolmogorov equation with a potential
    Bogachev, V. I.
    Kirillov, A. I.
    Shaposhnikov, S. V.
    [J]. DOKLADY MATHEMATICS, 2014, 89 (01) : 24 - 29
  • [6] A stationary Fokker-Planck-Kolmogorov equation with a potential
    V. I. Bogachev
    A. I. Kirillov
    S. V. Shaposhnikov
    [J]. Doklady Mathematics, 2014, 89 : 24 - 29
  • [7] FOKKER-PLANCK-KOLMOGOROV EQUATION AND SYNTHESIS OF RELAY CONTROL SYSTEMS
    KRASOVSK.AA
    [J]. ENGINEERING CYBERNETICS, 1967, (05): : 45 - &
  • [8] VARIATIONAL PRINCIPLE FOR FOKKER-PLANCK-KOLMOGOROV EQUATION
    BOYADJIEV, TL
    [J]. DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1975, 28 (12): : 1587 - 1589
  • [9] ANALYSIS OF NONLINEAR OSCILLATORS UNDER STOCHASTIC EXCITATION BY THE FOKKER-PLANCK-KOLMOGOROV EQUATION
    BARATTA, A
    ZUCCARO, G
    [J]. NONLINEAR DYNAMICS, 1994, 5 (03) : 255 - 271
  • [10] New exact solutions to the Fokker-Planck-Kolmogorov equation
    Unal, Gazanfer
    Sun, Jian-Qiao
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (10) : 2051 - 2059