ANALYSIS OF NONLINEAR OSCILLATORS UNDER STOCHASTIC EXCITATION BY THE FOKKER-PLANCK-KOLMOGOROV EQUATION

被引:7
|
作者
BARATTA, A [1 ]
ZUCCARO, G [1 ]
机构
[1] UNIV NAPLES,LUPT,CTR RIC INTERDIPARTIMENTALE,I-80138 NAPLES,ITALY
关键词
NONLINEAR DYNAMICS; STOCHASTIC EXCITATION;
D O I
10.1007/BF00045336
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The paper deals with the analysis of stochastic mechanical systems with one degree of freedom and proposes a simple procedure to obtain a representation of the dynamical response. In particular, approximate solution of the FPK equation is obtained for a system subjected to a stochastic force term. The resolving procedure is implemented with reference to a polynomial expansion of the restoring force function. Numerical tests are performed with reference to Duffing and van der Pol oscillators, showing good agreement with simulated response.
引用
收藏
页码:255 / 271
页数:17
相关论文
共 50 条
  • [1] FOKKER-PLANCK-KOLMOGOROV EQUATION
    SMITH, JR
    [J]. MATRIX AND TENSOR QUARTERLY, 1975, 25 (04): : 150 - &
  • [2] FOKKER-PLANCK-KOLMOGOROV EQUATION
    SMITH, JR
    [J]. MATRIX AND TENSOR QUARTERLY, 1975, 26 (02): : 61 - 62
  • [3] Uniqueness of probability solutions to nonlinear Fokker-Planck-Kolmogorov equation
    O. A. Manita
    M. S. Romanov
    S. V. Shaposhnikov
    [J]. Doklady Mathematics, 2015, 91 : 142 - 146
  • [4] Uniqueness of probability solutions to nonlinear Fokker-Planck-Kolmogorov equation
    Manita, O. A.
    Romanov, M. S.
    Shaposhnikov, S. V.
    [J]. DOKLADY MATHEMATICS, 2015, 91 (02) : 142 - 146
  • [5] Approximate solution of the Fokker-Planck-Kolmogorov equation
    Di Paola, M
    Sofi, A
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2002, 17 (04) : 369 - 384
  • [6] On the Fundamental Solution of the Fokker-Planck-Kolmogorov Equation
    Chechkin, A. G.
    Shamaev, A. S.
    [J]. DOKLADY MATHEMATICS, 2017, 95 (01) : 55 - 59
  • [7] A stationary Fokker-Planck-Kolmogorov equation with a potential
    Bogachev, V. I.
    Kirillov, A. I.
    Shaposhnikov, S. V.
    [J]. DOKLADY MATHEMATICS, 2014, 89 (01) : 24 - 29
  • [8] A stationary Fokker-Planck-Kolmogorov equation with a potential
    V. I. Bogachev
    A. I. Kirillov
    S. V. Shaposhnikov
    [J]. Doklady Mathematics, 2014, 89 : 24 - 29
  • [9] VARIATIONAL PRINCIPLE FOR FOKKER-PLANCK-KOLMOGOROV EQUATION
    BOYADJIEV, TL
    [J]. DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1975, 28 (12): : 1587 - 1589
  • [10] Nonlinear Fokker-Planck-Kolmogorov Equations for Measures
    Shaposhnikov, Stanislav, V
    [J]. STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND RELATED FIELDS: IN HONOR OF MICHAEL ROCKNER, SPDERF, 2018, 229 : 367 - 379