An efficient prime-length DFT algorithm over finite fields GF(2m)

被引:3
|
作者
Gappmair, W [1 ]
机构
[1] Graz Univ Technol, Dept Commun & Wave Propagat, A-8010 Graz, Austria
来源
关键词
D O I
10.1002/ett.909
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
This letter describes a discrete Fourier transform (DFT) for prime transform lengths N greater than or equal to 3, where the sample values are elements of finite (Galois) fields GF(2(m)). A regular and uniform system of additions and multiplications is presented which reduces the multiplicative complexity by at least one-quarter, compared with a brute-force implementation. The benefits of the algorithm are shown with respect to BCH decoding; in particular, the efficient computation of syndromes will be discussed. Copyright (C) 2003 AEI.
引用
下载
收藏
页码:171 / 176
页数:6
相关论文
共 50 条
  • [21] An efficient systolic array algorithm for the VLSI implementation of a prime-length DHT
    Chiper, DF
    Swamy, MNS
    Ahmad, MO
    ISSCS 2005: INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS, VOLS 1 AND 2, PROCEEDINGS, 2005, : 167 - 169
  • [22] A scalable and unified multiplier architecture for finite fields GF(p) and GF(2m)
    Savas, E
    Tenca, AF
    Koç, ÇK
    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS-CHES 2000, PROCEEDINGS, 2001, 1965 : 277 - 292
  • [23] An Efficient Algorithm for Computing Modular Division over GF(2m) in Elliptic Curve Cryptography
    Lin, Siyuan
    He, Shan
    Guo, Xin
    Guo, Donghui
    PROCEEDINGS OF 2017 11TH IEEE INTERNATIONAL CONFERENCE ON ANTI-COUNTERFEITING, SECURITY, AND IDENTIFICATION (ASID), 2017, : 179 - 182
  • [24] Bit-Parallel Arithmetic Implementations over Finite Fields GF(2m) with Reconfigurable Hardware
    José Luis Imaña
    Acta Applicandae Mathematica, 2002, 73 : 337 - 356
  • [25] DIVISION OVER GF(2M)
    FENN, STJ
    TAYLOR, D
    BENAISSA, M
    ELECTRONICS LETTERS, 1992, 28 (24) : 2259 - 2261
  • [26] Bit-parallel arithmetic implementations over finite fields GF(2m) with reconfigurable hardware
    Imaña, JL
    ACTA APPLICANDAE MATHEMATICAE, 2002, 73 (03) : 337 - 356
  • [27] Instruction set extensions for fast arithmetic in finite fields GF(p) and GF(2m)
    Grossschädl, J
    Savas, E
    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2004, PROCEEDINGS, 2004, 3156 : 133 - 147
  • [28] Reduced complexity polynomial multiplier architecture for finite fields GF(2m)
    Choi, Se-Hyu
    Lee, Keon-Jik
    IEICE ELECTRONICS EXPRESS, 2017, 14 (17):
  • [29] Time-space efficient exponentiation over GF(2m)
    Ku, KM
    Ha, KJ
    Yoo, KY
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2003, PT 1, PROCEEDINGS, 2003, 2667 : 875 - 882
  • [30] Digit-serial systolic multiplier for finite fields GF(2m)
    Guo, JH
    Wang, CL
    IEE PROCEEDINGS-COMPUTERS AND DIGITAL TECHNIQUES, 1998, 145 (02): : 143 - 148