On the local vertex antimagic total coloring of some families tree

被引:5
|
作者
Putri, Desi Febriani [1 ,2 ]
Dafik [1 ,3 ]
Agustin, Ika Hesti [1 ,2 ]
Alfarisi, Ridho [1 ,4 ]
机构
[1] Univ Jember, CGANT, Jember, Indonesia
[2] Univ Jember, Dept Math, Jember, Indonesia
[3] Univ Jember, Dept Math Educ, Jember, Indonesia
[4] Univ Jember, Dept Elementary Sch Teacher Educ, Jember, Indonesia
关键词
Local antimagic vertex total coloring; chromatic number; some families tree;
D O I
10.1088/1742-6596/1008/1/012035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G(V,E) be a graph of vertex set V and edge set E. Local vertex antimagic total coloring developed from local edge and local vertex antimagic coloring of graph. Local vertex antimagic total coloring is defined f: V(G) boolean OR E(G) -> {1,2,3...,vertical bar V(G)vertical bar + vertical bar E(G)vertical bar} if for any two adjacent vertices v(1) and v(2), w(v1) not equal w(v2), where for v is an element of G, w(v) = Sigma c subset of E(v) f(e) + f(v), where E(v) and V (v) are respectively the set of edges incident to v and the set of vertices adjacent to v. Thus, any local vertex antimagic total coloring induces a proper vertex coloring of G if each vertex v is assigned the color w(v). The chromatic number of local vertex antimagic total coloring denote chi(lvat)(G) is the minimum number of colors taken over all colorings induced by local vertex antimagic total coloring of graph G. In this paper, we use some families tree graph. We also study the existence of local vertex antimagic total coloring chromatic number of some families tree namely star graph, double star graph, banana tree graph, centipede graph, and amalgamation of star graph.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] On super vertex-antimagic total labelings of disjoint union of paths
    Ali, Gohar
    Baca, Martin
    Bashir, Fozia
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2009, 6 (01) : 11 - 20
  • [42] On local vertex irregular reflexive coloring of graphs
    Dafik
    Koesoemawati, D.J.
    Agustin, I.H.
    Kurniawati, E.Y.
    Nisviasari, R.
    Journal of Physics: Conference Series, 2022, 2157 (01):
  • [43] The Adjacent Vertex Distinguishing Total Chromatic Number of Some Families of Snarks
    Chen, Qin
    ARS COMBINATORIA, 2017, 132 : 311 - 321
  • [44] On Monte Carlo Tree Search for Weighted Vertex Coloring
    Grelier, Cyril
    Goudet, Olivier
    Hao, Jin-Kao
    EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION, EVOCOP 2022, 2022, 13222 : 1 - 16
  • [45] Vertex Coloring of Graphs by Total 2-Weightings
    Jonathan Hulgan
    Jenő Lehel
    Kenta Ozeki
    Kiyoshi Yoshimoto
    Graphs and Combinatorics, 2016, 32 : 2461 - 2471
  • [46] D(β)-vertex-distinguishing total coloring of graphs
    Zhongfu Zhang
    Jingwen Li
    Xiang’en Chen
    Bing Yao
    Wenjie Wang
    Pengxiang Qiu
    Science in China Series A: Mathematics, 2006, 49 : 1430 - 1440
  • [47] EVERY GRAPH IS LOCAL ANTIMAGIC TOTAL AND ITS APPLICATIONS
    Lau, Gee-Choon
    Schaffer, Karl
    Shiu, Wai Chee
    OPUSCULA MATHEMATICA, 2023, 43 (06) : 841 - 864
  • [48] Adjacent vertex distinguishing total coloring in split graphs
    Verma, Shaily
    Fu, Hung-Lin
    Panda, B. S.
    DISCRETE MATHEMATICS, 2022, 345 (11)
  • [49] The adjacent vertex distinguishing total coloring of planar graphs
    Weifan Wang
    Danjun Huang
    Journal of Combinatorial Optimization, 2014, 27 : 379 - 396
  • [50] D(β)-vertex-distinguishing total coloring of graphs
    ZHANG Zhongfu
    College of Mathematics and Information Science
    College of Information and Electrical Engineering
    Science China Mathematics, 2006, (10) : 1430 - 1440