On the local vertex antimagic total coloring of some families tree

被引:5
|
作者
Putri, Desi Febriani [1 ,2 ]
Dafik [1 ,3 ]
Agustin, Ika Hesti [1 ,2 ]
Alfarisi, Ridho [1 ,4 ]
机构
[1] Univ Jember, CGANT, Jember, Indonesia
[2] Univ Jember, Dept Math, Jember, Indonesia
[3] Univ Jember, Dept Math Educ, Jember, Indonesia
[4] Univ Jember, Dept Elementary Sch Teacher Educ, Jember, Indonesia
关键词
Local antimagic vertex total coloring; chromatic number; some families tree;
D O I
10.1088/1742-6596/1008/1/012035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G(V,E) be a graph of vertex set V and edge set E. Local vertex antimagic total coloring developed from local edge and local vertex antimagic coloring of graph. Local vertex antimagic total coloring is defined f: V(G) boolean OR E(G) -> {1,2,3...,vertical bar V(G)vertical bar + vertical bar E(G)vertical bar} if for any two adjacent vertices v(1) and v(2), w(v1) not equal w(v2), where for v is an element of G, w(v) = Sigma c subset of E(v) f(e) + f(v), where E(v) and V (v) are respectively the set of edges incident to v and the set of vertices adjacent to v. Thus, any local vertex antimagic total coloring induces a proper vertex coloring of G if each vertex v is assigned the color w(v). The chromatic number of local vertex antimagic total coloring denote chi(lvat)(G) is the minimum number of colors taken over all colorings induced by local vertex antimagic total coloring of graph G. In this paper, we use some families tree graph. We also study the existence of local vertex antimagic total coloring chromatic number of some families tree namely star graph, double star graph, banana tree graph, centipede graph, and amalgamation of star graph.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] On total coloring and equitable total coloring of infinite snark families
    Palma, Miguel A. D. R.
    Goncalves, Isabel F. A.
    Sasaki, Diana
    Dantas, Simone
    RAIRO-OPERATIONS RESEARCH, 2023, 57 (05) : 2619 - 2637
  • [32] Super-vertex-antimagic total labelings of disconnected graphs
    Ali, Gohar
    Baca, Martin
    Lin, Yuqing
    Semanicova-Fenovcikova, Andrea
    DISCRETE MATHEMATICS, 2009, 309 (20) : 6048 - 6054
  • [33] On (a, d)-vertex-antimagic total labeling of Harary graphs
    Hussain, M.
    Ali, Kashif
    Rahim, M. T.
    Baskoro, Edy Tri
    UTILITAS MATHEMATICA, 2010, 83 : 73 - 80
  • [34] The Local Antimagic Total Chromatic Number of Some Wheel-Related Graphs
    Yang, Xue
    Bian, Hong
    Yu, Haizheng
    Liu, Dandan
    AXIOMS, 2022, 11 (03)
  • [35] A note on (a, d)-vertex antimagic total labeling of paths and cycles
    Tezer, M
    Cahit, I
    UTILITAS MATHEMATICA, 2005, 68 : 217 - 221
  • [36] Some generalizations of theorems on vertex coloring
    Berlov, S. L.
    Dol'nikov, V. L.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (07) : 1582 - 1585
  • [37] Vertex-distinguishing total coloring of graphs
    Zhang, Zhongfu
    Qiu, Pengxiang
    Xu, Baogen
    Li, Jingwen
    Chen, Xiangen
    Yao, Bing
    ARS COMBINATORIA, 2008, 87 : 33 - 45
  • [38] Vertex Distinguishing Total Coloring of Ladder Graphs
    Bao, Shitang
    Wang, Zhiwen
    Wen, Fei
    INFORMATION AND AUTOMATION, 2011, 86 : 118 - +
  • [39] A new vertex distinguishing total coloring of trees
    Yang, Chao
    Yao, Bing
    Yin, Zhi-xiang
    AIMS MATHEMATICS, 2021, 6 (09): : 9468 - 9475
  • [40] The Smarandachely Adjacent Vertex Distinguishing E-total Coloring of Some Join Graphs
    Li, Muchun
    Wang, Shuangli
    Wang, Lili
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS II, PTS 1 AND 2, 2014, 475-476 : 379 - 382