On the local vertex antimagic total coloring of some families tree

被引:5
|
作者
Putri, Desi Febriani [1 ,2 ]
Dafik [1 ,3 ]
Agustin, Ika Hesti [1 ,2 ]
Alfarisi, Ridho [1 ,4 ]
机构
[1] Univ Jember, CGANT, Jember, Indonesia
[2] Univ Jember, Dept Math, Jember, Indonesia
[3] Univ Jember, Dept Math Educ, Jember, Indonesia
[4] Univ Jember, Dept Elementary Sch Teacher Educ, Jember, Indonesia
关键词
Local antimagic vertex total coloring; chromatic number; some families tree;
D O I
10.1088/1742-6596/1008/1/012035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G(V,E) be a graph of vertex set V and edge set E. Local vertex antimagic total coloring developed from local edge and local vertex antimagic coloring of graph. Local vertex antimagic total coloring is defined f: V(G) boolean OR E(G) -> {1,2,3...,vertical bar V(G)vertical bar + vertical bar E(G)vertical bar} if for any two adjacent vertices v(1) and v(2), w(v1) not equal w(v2), where for v is an element of G, w(v) = Sigma c subset of E(v) f(e) + f(v), where E(v) and V (v) are respectively the set of edges incident to v and the set of vertices adjacent to v. Thus, any local vertex antimagic total coloring induces a proper vertex coloring of G if each vertex v is assigned the color w(v). The chromatic number of local vertex antimagic total coloring denote chi(lvat)(G) is the minimum number of colors taken over all colorings induced by local vertex antimagic total coloring of graph G. In this paper, we use some families tree graph. We also study the existence of local vertex antimagic total coloring chromatic number of some families tree namely star graph, double star graph, banana tree graph, centipede graph, and amalgamation of star graph.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Local Super Antimagic Total Labeling for Vertex Coloring of Graphs
    Slamin, Slamin
    Adiwijaya, Nelly Oktavia
    Hasan, Muhammad Ali
    Dafik, Dafik
    Wijaya, Kristiana
    SYMMETRY-BASEL, 2020, 12 (11): : 1 - 17
  • [2] Local Antimagic Vertex Coloring of a Graph
    S. Arumugam
    K. Premalatha
    Martin Bača
    Andrea Semaničová-Feňovčíková
    Graphs and Combinatorics, 2017, 33 : 275 - 285
  • [3] Local Antimagic Vertex Coloring of a Graph
    Arumugam, S.
    Premalatha, K.
    Baa, Martin
    Semanicova-Fenovcikova, Andrea
    GRAPHS AND COMBINATORICS, 2017, 33 (02) : 275 - 285
  • [4] Local antimagic vertex dynamic coloring of some graphs family
    Wardani, P. L.
    Dafik
    Kristiana, A. I.
    Agustin, I. H.
    Alfarisi, R.
    FIRST INTERNATIONAL CONFERENCE ON ENVIRONMENTAL GEOGRAPHY AND GEOGRAPHY EDUCATION (ICEGE), 2019, 243
  • [5] Local antimagic vertex coloring of a Myceilski of graphs
    Sethukkarasi, A.
    Vidyanandini, S.
    Nayak, Soumya Ranjan
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2024, 27 (04): : 1389 - 1401
  • [6] Local antimagic vertex coloring for generalized friendship graphs
    Nalliah, M.
    Shankar, R.
    Wang, Tao-Ming
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (04): : 1063 - 1078
  • [7] Local irregular vertex coloring of some families graph
    Kristiana, A., I
    Alfarisi, Ridho
    Dafik
    Azahra, N.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (01): : 15 - 30
  • [8] On Super Local Antimagic Total Edge Coloring of Some Wheel Related Graphs
    Agustin, Ika Hesti
    Alfarisi, Ridho
    Dafik
    Kristiana, A. I.
    Prihandini, R. M.
    Kurniawati, E. Y.
    INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE (ICSAS) 2018, 2018, 2014
  • [9] The chromatic number of local antimagic total edge coloring of some related cycle graphs
    Kurniawati, E. Y.
    Dafik
    Agustin, I. H.
    Prihandini, R. M.
    Nisviasari, R.
    FIRST INTERNATIONAL CONFERENCE ON ENVIRONMENTAL GEOGRAPHY AND GEOGRAPHY EDUCATION (ICEGE), 2019, 243
  • [10] Local super antimagic total face coloring of planar graphs
    Nisviasari, R.
    Dafik
    Maryati, T. K.
    Agustin, I. H.
    Kurniawati, E. Y.
    FIRST INTERNATIONAL CONFERENCE ON ENVIRONMENTAL GEOGRAPHY AND GEOGRAPHY EDUCATION (ICEGE), 2019, 243