CALIBRATION OF LINEARIZED SOLUTIONS FOR SATELLITE RELATIVE MOTION

被引:0
|
作者
Sinclair, Andrew J. [1 ]
Sherrill, Ryan E. [1 ]
Lovell, T. Alan [2 ]
机构
[1] Auburn Univ, Dept Aerosp Engn, 211 Davis Hall, Auburn, AL 36849 USA
[2] Air Force Res Lab, Space Vehicles Directorate, Kirtland AFB, NM 87117 USA
来源
关键词
NONLINEARITY; DYNAMICS; ORBIT;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The motion of a deputy satellite relative to a chief satellite can be described with either Cartesian coordinates or orbital-element differences. For close proximity, both descriptions can be linearized. An underappreciated fact is that the linearized descriptions are equivalent: the linearized transformation between the two solves the linearized dynamics. This suggests a calibrated initial condition for linearized Cartesian propagation that is related to the orbital-element differences by the linearized transformation. This calibration greatly increases the domain of validity of the linearized approximation, and provides far greater accuracy in matching the nonlinear solution over a larger range of separations.
引用
收藏
页码:4071 / 4086
页数:16
相关论文
共 50 条
  • [1] Calibration of Linearized Solutions for Satellite Relative Motion
    Sinclair, Andrew J.
    Sherrill, Ryan E.
    Lovell, T. Alan
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2014, 37 (04) : 1362 - +
  • [2] DECALIBRATION OF LINEARIZED SOLUTIONS FOR SATELLITE RELATIVE MOTION
    Sinclair, Andrew J.
    Newman, Brett
    Lovell, T. Alan
    SPACEFLIGHT MECHANICS 2015, PTS I-III, 2015, 155 : 2067 - 2076
  • [3] Geometric perspectives on fundamental solutions in the linearized satellite relative motion problem
    Burnett, Ethan R.
    Schaub, Hanspeter
    ACTA ASTRONAUTICA, 2022, 190 : 48 - 61
  • [4] RELATIVE SATELLITE MOTION SOLUTIONS USING CURVILINEAR COORDINATE FRAMES
    Perez, Alex
    Lovell, T. Alan
    Geller, David K.
    Newman, Brett
    SPACEFLIGHT MECHANICS 2015, PTS I-III, 2015, 155 : 2113 - 2134
  • [5] Linearized J2 and atmospheric drag model for satellite relative motion with small eccentricity
    Cao, Lu
    Misra, Arun K.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2015, 229 (14) : 2718 - 2736
  • [6] Use of Cartesian-Coordinate Calibration for Satellite Relative-Motion Control
    Sinclair, Andrew J.
    Sherrill, Ryan E.
    Lovell, T. Alan
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2015, 38 (09) : 1842 - 1846
  • [7] REVIEW OF THE SOLUTIONS TO THE TSCHAUNER-HEMPEL EQUATIONS FOR SATELLITE RELATIVE MOTION
    Sinclair, Andrew J.
    Sherrill, Ryan E.
    Lovell, T. Alan
    SPACEFLIGHT MECHANICS 2012, 2012, 143 : 733 - +
  • [8] Geometric interpretation of the Tschauner-Hempel solutions for satellite relative motion
    Sinclair, Andrew J.
    Sherrill, Ryan E.
    Lovell, T. Alan
    ADVANCES IN SPACE RESEARCH, 2015, 55 (09) : 2268 - 2279
  • [9] Model for Linearized Satellite Relative Motion About a J2-Perturbed Mean Circular Orbit
    Vadali, Srinivas R.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2009, 32 (05) : 1687 - 1691
  • [10] Relative satellite motion in a formation
    Wnuk, Edwin
    Golebiewska, Justyna
    ADVANCES IN SPACE RESEARCH, 2007, 40 (01) : 35 - 42