REVIEW OF THE SOLUTIONS TO THE TSCHAUNER-HEMPEL EQUATIONS FOR SATELLITE RELATIVE MOTION

被引:0
|
作者
Sinclair, Andrew J. [1 ]
Sherrill, Ryan E. [1 ]
Lovell, T. Alan [2 ]
机构
[1] Auburn Univ, Dept Aerosp Engn, 211 Davis Hall, Auburn, AL 36849 USA
[2] AF Res Lab, Kirtland AFB, NM 87117 USA
来源
SPACEFLIGHT MECHANICS 2012 | 2012年 / 143卷
关键词
ORBIT;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The Tschauner-Hempel equations model the motion of a deputy satellite relative to a chief satellite with arbitrary eccentricity. They are linear non-autonomous differential equations with the chiefs true anomaly as the independent variable. Since they first appeared, numerous analytical solutions have been presented. This paper provides a focused review of some of these solutions: highlighting how they are related and their singularities. The fundamental solutions of the Tschauner-Hempel equations can be interpreted geometrically as generalizations of the drifting two-by-one ellipse that describes relative motion in circular orbits. General solutions are formed by taking linear combinations of these fundamental solutions.
引用
收藏
页码:733 / +
页数:2
相关论文
共 50 条
  • [1] Geometric interpretation of the Tschauner-Hempel solutions for satellite relative motion
    Sinclair, Andrew J.
    Sherrill, Ryan E.
    Lovell, T. Alan
    ADVANCES IN SPACE RESEARCH, 2015, 55 (09) : 2268 - 2279
  • [2] Solutions of Tschauner-Hempel Equations
    Dang, Zhaohui
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2017, 40 (11) : 2956 - 2960
  • [3] Application of the Nonlinear Tschauner-Hempel Equations to Satellite Relative Position Estimation and Control
    Vepa, Ranjan
    JOURNAL OF NAVIGATION, 2018, 71 (01): : 44 - 64
  • [4] On the Bound of Tschauner-Hempel Equations' Error with Respect to Keplerian Motion
    Hu, Yong
    Xie, Yongchun
    Jiang, Tiantian
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2014, 61 (02): : 156 - 169
  • [5] On the Bound of Tschauner-Hempel Equations’ Error with Respect to Keplerian Motion
    Yong Hu
    Yongchun Xie
    Tiantian Jiang
    The Journal of the Astronautical Sciences, 2014, 61 : 156 - 169
  • [6] Best forms of solution of the Tschauner-Hempel differential equations
    Carter, TE
    SPACEFLIGHT MECHANICS 1997, PTS 1 AND 2, 1997, 95 : 1059 - 1066
  • [7] Guidance, Navigation and Control for Satellite Proximity Operations using Tschauner-Hempel Equations
    Okasha, Mohamed
    Newman, Brett
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2013, 60 (01): : 109 - 136
  • [8] Guidance, Navigation and Control for Satellite Proximity Operations using Tschauner-Hempel Equations
    Mohamed Okasha
    Brett Newman
    The Journal of the Astronautical Sciences, 2013, 60 : 109 - 136
  • [9] Graphical Generation of Periodic Orbits of Tschauner-Hempel Equations
    Bando, Mai
    Ichikawa, Akira
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2012, 35 (03) : 1002 - 1007
  • [10] Formation-Flying Trajectory Design Based on Attractive Sets of Tschauner-Hempel Equations
    Yamane, Motoki
    Bando, Mai
    Hokamoto, Shinji
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2020, 43 (10) : 1943 - 1951