REVIEW OF THE SOLUTIONS TO THE TSCHAUNER-HEMPEL EQUATIONS FOR SATELLITE RELATIVE MOTION

被引:0
|
作者
Sinclair, Andrew J. [1 ]
Sherrill, Ryan E. [1 ]
Lovell, T. Alan [2 ]
机构
[1] Auburn Univ, Dept Aerosp Engn, 211 Davis Hall, Auburn, AL 36849 USA
[2] AF Res Lab, Kirtland AFB, NM 87117 USA
来源
SPACEFLIGHT MECHANICS 2012 | 2012年 / 143卷
关键词
ORBIT;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The Tschauner-Hempel equations model the motion of a deputy satellite relative to a chief satellite with arbitrary eccentricity. They are linear non-autonomous differential equations with the chiefs true anomaly as the independent variable. Since they first appeared, numerous analytical solutions have been presented. This paper provides a focused review of some of these solutions: highlighting how they are related and their singularities. The fundamental solutions of the Tschauner-Hempel equations can be interpreted geometrically as generalizations of the drifting two-by-one ellipse that describes relative motion in circular orbits. General solutions are formed by taking linear combinations of these fundamental solutions.
引用
收藏
页码:733 / +
页数:2
相关论文
共 50 条
  • [31] Approximate Analytical Solutions to Optimal Reconfiguration Problems in Perturbed Satellite Relative Motion
    Lee, Sangjin
    Park, Sang-Young
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2011, 34 (04) : 1097 - 1111
  • [32] Solutions and periodicity of satellite relative motion under even zonal harmonics perturbations
    Martinusi, Vladimir
    Gurfil, Pini
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2011, 111 (04): : 387 - 414
  • [33] EQUATIONS OF PERTURBED SATELLITE MOTION
    TIMOSHKO.EI
    SOVIET ASTRONOMY AJ USSR, 1972, 15 (05): : 840 - &
  • [34] CANONICAL EQUATIONS OF MOTION FOR A SATELLITE
    AKSENOV, EP
    SOVIET ASTRONOMY AJ USSR, 1969, 12 (06): : 1015 - &
  • [35] Hamilton equations for relative motion
    Rumyantsev, VV
    Vodopyanova, OA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1998, (01): : 73 - 77
  • [36] GEOMETRICAL RELATIVE ORBIT MODELING OF SATELLITE RELATIVE MOTION
    Lee, Soung Sub
    Hall, Christopher D.
    THE F. LANDIS MARKLEY ASTRONAUTICS SYMPOSIUM, 2008, 132 : 97 - 114
  • [37] Bounded Martian satellite relative motion
    Guy Marcus
    Pini Gurfil
    Celestial Mechanics and Dynamical Astronomy, 2021, 133
  • [38] Bounded Martian satellite relative motion
    Marcus, Guy
    Gurfil, Pini
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2021, 133 (06):
  • [39] OPTIMAL IMPULSIVE SATELLITE TRANSFERS USING SECOND-ORDER SOLUTIONS OF RELATIVE MOTION
    Huang, Weijun
    SPACEFLIGHT MECHANICS 2010, PTS I-III, 2010, 136 : 2419 - 2437
  • [40] Exact solutions and adiabatic invariants for equations of satellite attitude motion under Coulomb torque
    Aslanov, Vladimir S.
    NONLINEAR DYNAMICS, 2017, 90 (04) : 2545 - 2556