REVIEW OF THE SOLUTIONS TO THE TSCHAUNER-HEMPEL EQUATIONS FOR SATELLITE RELATIVE MOTION

被引:0
|
作者
Sinclair, Andrew J. [1 ]
Sherrill, Ryan E. [1 ]
Lovell, T. Alan [2 ]
机构
[1] Auburn Univ, Dept Aerosp Engn, 211 Davis Hall, Auburn, AL 36849 USA
[2] AF Res Lab, Kirtland AFB, NM 87117 USA
来源
SPACEFLIGHT MECHANICS 2012 | 2012年 / 143卷
关键词
ORBIT;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The Tschauner-Hempel equations model the motion of a deputy satellite relative to a chief satellite with arbitrary eccentricity. They are linear non-autonomous differential equations with the chiefs true anomaly as the independent variable. Since they first appeared, numerous analytical solutions have been presented. This paper provides a focused review of some of these solutions: highlighting how they are related and their singularities. The fundamental solutions of the Tschauner-Hempel equations can be interpreted geometrically as generalizations of the drifting two-by-one ellipse that describes relative motion in circular orbits. General solutions are formed by taking linear combinations of these fundamental solutions.
引用
收藏
页码:733 / +
页数:2
相关论文
共 50 条
  • [21] NONLINEAR REPRESENTATIONS OF SATELLITE RELATIVE MOTION EQUATIONS USING CURVILINEAR TRANSFORMATIONS
    Perez, Alex C.
    Lovell, T. Alan
    GUIDANCE, NAVIGATION, AND CONTROL 2015, 2015, 154 : 757 - 768
  • [22] Geometric perspectives on fundamental solutions in the linearized satellite relative motion problem
    Burnett, Ethan R.
    Schaub, Hanspeter
    ACTA ASTRONAUTICA, 2022, 190 : 48 - 61
  • [23] RELATIVE MOTION EQUATIONS
    RAIGORODSKII, LD
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1973, (06): : 116 - 120
  • [24] Correction of precession-nutation and polar motion in analytical solutions of satellite equations of motion
    Du, Yujun
    Zhang, Fangzhao
    Xu, Tianhe
    Gao, Fan
    Xu, Guochang
    ADVANCES IN SPACE RESEARCH, 2021, 68 (10) : 4229 - 4241
  • [25] Equations of Satellite Relative Motion in Low Earth Orbit under Lunar Perturbation
    Xu, Guangyan
    Luo, Jianfu
    Li, Zheng
    Chen, Xia
    2014 IEEE CHINESE GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2014, : 2204 - 2209
  • [26] Relative satellite motion in a formation
    Wnuk, Edwin
    Golebiewska, Justyna
    ADVANCES IN SPACE RESEARCH, 2007, 40 (01) : 35 - 42
  • [27] The dynamics of relative satellite motion
    Wiesel, WE
    SPACEFLIGHT MECHANICS 2001, VOL 108, PTS 1 AND 2, 2001, 108 : 869 - 879
  • [28] Stable odd solutions of some periodic equations modeling satellite motion
    Nuñez, D
    Torres, PJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (02) : 700 - 709
  • [29] CONSTRUCTION OF APPROXIMATE SOLUTIONS OF EQUATIONS FOR THE DISTURBED MOTION OF A SATELLITE OF A SPHEROIDAL PLANET
    MAMEDOV, NS
    ASTRONOMICHESKII ZHURNAL, 1983, 60 (04): : 767 - 770
  • [30] Solutions and periodicity of satellite relative motion under even zonal harmonics perturbations
    Vladimir Martinuşi
    Pini Gurfil
    Celestial Mechanics and Dynamical Astronomy, 2011, 111 : 387 - 414