CALIBRATION OF LINEARIZED SOLUTIONS FOR SATELLITE RELATIVE MOTION

被引:0
|
作者
Sinclair, Andrew J. [1 ]
Sherrill, Ryan E. [1 ]
Lovell, T. Alan [2 ]
机构
[1] Auburn Univ, Dept Aerosp Engn, 211 Davis Hall, Auburn, AL 36849 USA
[2] Air Force Res Lab, Space Vehicles Directorate, Kirtland AFB, NM 87117 USA
来源
关键词
NONLINEARITY; DYNAMICS; ORBIT;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The motion of a deputy satellite relative to a chief satellite can be described with either Cartesian coordinates or orbital-element differences. For close proximity, both descriptions can be linearized. An underappreciated fact is that the linearized descriptions are equivalent: the linearized transformation between the two solves the linearized dynamics. This suggests a calibrated initial condition for linearized Cartesian propagation that is related to the orbital-element differences by the linearized transformation. This calibration greatly increases the domain of validity of the linearized approximation, and provides far greater accuracy in matching the nonlinear solution over a larger range of separations.
引用
收藏
页码:4071 / 4086
页数:16
相关论文
共 50 条
  • [41] Modeling and Analysis of the Bounds of Periodical Satellite Relative Motion
    Dang, Zhaohui
    Wang, Zhaokui
    Zhang, Yulin
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2014, 37 (06) : 1984 - 1998
  • [42] Satellite relative motion using differential equinoctial elements
    Gim, DW
    Alfriend, KT
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2005, 92 (04): : 295 - 336
  • [43] Optimal Satellite Transfers Using Relative Motion Dynamics
    Ketema, Yohannes
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2009, 32 (05) : 1508 - 1518
  • [44] THEONA theory of relative satellite motion flying in the formation
    Golikov, A
    PROCEEDINGS OF THE 18TH INTERNATIONAL SYMPOSIUM ON SPACE FLIGHT DYNAMICS, 2004, 548 : 59 - 64
  • [45] SAFE RELATIVE MOTION TRAJECTORY PLANNING FOR SATELLITE INSPECTION
    Frey, Gregory R.
    Petersen, Christopher D.
    Leve, Frederick A.
    Girard, Anouck R.
    Kolmanovsky, Ilya V.
    SPACEFLIGHT MECHANICS 2017, PTS I - IV, 2017, 160 : 1039 - 1058
  • [46] Solutions to the variational equations for relative motion of satellites
    Lee, D.
    Cochran, J. E., Jr.
    Jo, J. H.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2007, 30 (03) : 669 - 678
  • [47] Solutions to the variational equations for relative motion of satellites
    Cochran, J. E., Jr.
    Lee, D.
    Jo, J. H.
    ASTRODYNAMICS 2005, VOL 123, PTS 1-3, 2006, 123 : 727 - +
  • [48] Periodic Solutions of Nonlinear Relative Motion Satellites
    Pal, Ashok Kumar
    Abouelmagd, Elbaz, I
    Garcia Guirao, Juan Luis
    Brzezinski, Dariusz W.
    SYMMETRY-BASEL, 2021, 13 (04):
  • [49] Calibration of flux-gate magnetometers using relative motion
    Auster, HU
    Fornacon, KH
    Georgescu, E
    Glassmeier, KH
    Motschmann, U
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2002, 13 (07) : 1124 - 1131
  • [50] Linearized relative motion equations through orbital element differences for general Keplerian orbits
    Dang, Zhaohui
    Zhang, Hao
    ASTRODYNAMICS, 2018, 2 (03) : 201 - 215