Regularity of Solutions to the Dirichlet Problem for Monge-Ampere Equations

被引:1
|
作者
Charabati, Mohamad [1 ]
机构
[1] Univ Paul Sabatier, Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse 09, France
关键词
Complex Monge-Ampere equation; Hausdorff-Riesz measure; strongly hyperconvex Lipschitz domain; plurisubharmonic function; HOLDER CONTINUOUS SOLUTIONS; CONTINUITY;
D O I
10.1512/iumj.2017.66.6190
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Holder continuity of solutions to the Dirichlet problem for measures having density in L-p, p > 1 with respect to Hausdorff-Riesz measures of order 2n - 2 + epsilon for 0 < epsilon <= 2, in a bounded strongly hyperconvex Lipschitz domain. We note that the boundary data belongs to C-0,C-alpha (partial derivative Omega), 0 < alpha <= 1.
引用
收藏
页码:2187 / 2204
页数:18
相关论文
共 50 条