Existence and regularity of the solutions of some singular Monge-Ampere equations

被引:4
|
作者
Chen, Haodi [1 ]
Huang, Genggeng [1 ,2 ]
机构
[1] Australian Natl Univ, Math Sci Inst, Canberra, ACT 2601, Australia
[2] Fudan Univ, Sch Math Sci, Shanghai, Peoples R China
基金
澳大利亚研究理事会;
关键词
OPTIMAL BOUNDARY-REGULARITY;
D O I
10.1016/j.jde.2019.01.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the following singular Monge-Ampere equation {det D(2)u = 1/(Hu)(n+k+2)u*(k) in Omega subset of subset of R-n, (0.1) u = 0, on partial derivative Omega where k >= 0, H < 0 are constants and u* = x center dot del u(x) - u(x) is the Legendre transformation of u. Equation (0.1) is related to proper affine hyperspheres. We will show the existence of solutions of (0.1) u epsilon C-infinity(Omega) boolean AND C(<(Omega)over bar>) via regularization method. Using the technique in [10,12], we also obtain the optimal graph regularity of the solution of (0,1). (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:866 / 878
页数:13
相关论文
共 50 条