Spatial scale effects on sediment concentration in runoff during flood events for hilly areas of the Loess Plateau, China

被引:26
|
作者
Zheng, Mingguo [1 ]
Qin, Fen [2 ]
Sun, Liying [1 ]
Qi, Deli [1 ]
Cai, Qiangguo [1 ]
机构
[1] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proces, Beijing 100101, Peoples R China
[2] Henan Univ, Coll Environm & Planning, Kaifeng, Peoples R China
基金
中国国家自然科学基金;
关键词
spatial scale; hyperconcentrated flow; sediment yield; soil erosion; flood events; Loess Plateau; HYPERCONCENTRATED FLOW; DEBRIS FLOW; YIELD VARIABILITY; SOIL-EROSION; DELIVERY; TRANSITION; TRANSPORT; VOLCANO; CHANNEL; SYSTEMS;
D O I
10.1002/esp.2176
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The spatial scale effect on sediment concentration in runoff has received little attention despite numerous studies on sediment yield or sediment delivery ratio in the context of multiple spatial scales. We have addressed this issue for hilly areas of the Loess Plateau, north China where fluvial processes are mainly dominated by hyperconcentrated flows. The data on 717 flow events observed at 17 gauging stations and two runoff experimental plots, all located in the 3906km(2) Dalihe watershed, are presented. The combination of the downstream scour of hyperconcentrated flows and the downstream dilution, which is mainly caused by the base flow and is strengthened as a result of the strong patchy storms, determines the spatial change of sediment concentration in runoff during flood events. At the watershed scale, the scouring effect takes predominance first but is subordinate to the downstream dilution with a further increase in spatial scale. As a result, the event mean sediment concentration first increases following a power function with drainage basin area and then declines at the drainage basin area of about 700 km(2). The power function in combination with the proportional model of the runoff-sediment yield relationship we proposed before was used to establish the sediment-yield model, which is neither the physical-based model nor the regression model. This model, with only two variables (runoff depth and drainage basin area) and two parameters, can provide fairly accurate prediction of event sediment yield with model efficiency over 0.95 if small events with runoff depth lower than 1 mm are excluded. Copyright (c) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:1499 / 1509
页数:11
相关论文
共 50 条
  • [31] Quantitative Study on the Effects of Vegetation and Soil on Runoff and Sediment in the Loess Plateau
    Duan, Gaohui
    Leng, Chunqian
    Zhang, Zeyu
    Zheng, Cheng
    Wen, Zhongming
    FORESTS, 2024, 15 (08):
  • [32] Runoff-Sediment Simulation of Typical Small Watershed in Loess Plateau of China
    Jian, Shengqi
    Xiao, Peiqing
    Tang, Yan
    Jiao, Peng
    SUSTAINABILITY, 2023, 15 (06)
  • [33] Runoff and sediment yield under simulated rainfall on hillslopes in the Loess Plateau of China
    Zhao, Xining
    Wu, Pute
    Chen, Xiaoli
    Helmers, Matthew J.
    Zhou, Xiaobo
    SOIL RESEARCH, 2013, 51 (01) : 50 - 58
  • [34] Effects of different spatial distributions of physical soil crusts on runoff and erosion on the Loess Plateau in China
    Lu, Pei
    Xie, Xinli
    Wang, Linhua
    Wu, Faqi
    EARTH SURFACE PROCESSES AND LANDFORMS, 2017, 42 (13) : 2082 - 2089
  • [35] Distinguishing the effects of vegetation restoration on runoff and sediment generation on simulated rainfall on the hillslopes of the loess plateau of China
    Gu, Chaojun
    Mu, Xingmin
    Gao, Peng
    Zhao, Guangju
    Sun, Wenyi
    Tan, Xuejin
    PLANT AND SOIL, 2020, 447 (1-2) : 393 - 412
  • [36] Distinguishing the effects of vegetation restoration on runoff and sediment generation on simulated rainfall on the hillslopes of the loess plateau of China
    Chaojun Gu
    Xingmin Mu
    Peng Gao
    Guangju Zhao
    Wenyi Sun
    Xuejin Tan
    Plant and Soil, 2020, 447 : 393 - 412
  • [37] The relative importance of soil crust and slope angle in runoff and soil loss: A case study in the hilly areas of the Loess Plateau, North China
    Cheng Q.
    Ma W.
    Cai Q.
    GeoJournal, 2008, 71 (2-3) : 117 - 125
  • [38] Effects of surficial condition and rainfall intensity on runoff in a loess hilly area, China
    Wei, Wei
    Jia, Fuyan
    Yang, Lei
    Chen, Liding
    Zhang, Handan
    Yu, Yang
    JOURNAL OF HYDROLOGY, 2014, 513 : 115 - 126
  • [39] Local-scale spatial variability of soil organic carbon and its stock in the hilly area of the Loess Plateau, China
    Wang, Yafeng
    Fu, Bojie
    Lue, Yihe
    Song, Chengjun
    Luan, Yong
    QUATERNARY RESEARCH, 2010, 73 (01) : 70 - 76
  • [40] Effects of land use on phosphorus loss in the hilly area of the Loess Plateau, China
    Meng, Qinghua
    Fu, Bojie
    Tang, Xiaoping
    Ren, Hongchang
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2008, 139 (1-3) : 195 - 204