Spatial scale effects on sediment concentration in runoff during flood events for hilly areas of the Loess Plateau, China

被引:26
|
作者
Zheng, Mingguo [1 ]
Qin, Fen [2 ]
Sun, Liying [1 ]
Qi, Deli [1 ]
Cai, Qiangguo [1 ]
机构
[1] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proces, Beijing 100101, Peoples R China
[2] Henan Univ, Coll Environm & Planning, Kaifeng, Peoples R China
基金
中国国家自然科学基金;
关键词
spatial scale; hyperconcentrated flow; sediment yield; soil erosion; flood events; Loess Plateau; HYPERCONCENTRATED FLOW; DEBRIS FLOW; YIELD VARIABILITY; SOIL-EROSION; DELIVERY; TRANSITION; TRANSPORT; VOLCANO; CHANNEL; SYSTEMS;
D O I
10.1002/esp.2176
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The spatial scale effect on sediment concentration in runoff has received little attention despite numerous studies on sediment yield or sediment delivery ratio in the context of multiple spatial scales. We have addressed this issue for hilly areas of the Loess Plateau, north China where fluvial processes are mainly dominated by hyperconcentrated flows. The data on 717 flow events observed at 17 gauging stations and two runoff experimental plots, all located in the 3906km(2) Dalihe watershed, are presented. The combination of the downstream scour of hyperconcentrated flows and the downstream dilution, which is mainly caused by the base flow and is strengthened as a result of the strong patchy storms, determines the spatial change of sediment concentration in runoff during flood events. At the watershed scale, the scouring effect takes predominance first but is subordinate to the downstream dilution with a further increase in spatial scale. As a result, the event mean sediment concentration first increases following a power function with drainage basin area and then declines at the drainage basin area of about 700 km(2). The power function in combination with the proportional model of the runoff-sediment yield relationship we proposed before was used to establish the sediment-yield model, which is neither the physical-based model nor the regression model. This model, with only two variables (runoff depth and drainage basin area) and two parameters, can provide fairly accurate prediction of event sediment yield with model efficiency over 0.95 if small events with runoff depth lower than 1 mm are excluded. Copyright (c) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:1499 / 1509
页数:11
相关论文
共 50 条
  • [21] Runoff and sediment responses to conservation practices: Loess plateau of china
    Huang, MB
    Gallichand, J
    Zhang, PC
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2003, 39 (05): : 1197 - 1207
  • [22] Response relationship between vegetation structure and runoff-sediment yield in the hilly and gully area of the Loess Plateau, China
    Wen, Bojin
    Duan, Gaohui
    Lu, Jinxin
    Zhou, Ronglei
    Ren, Hanyu
    Wen, Zhongming
    CATENA, 2023, 227
  • [23] Numerical modeling of effects of vegetation restoration on runoff and sediment yield on the Loess Plateau, China
    Zhang, Ga
    An, Chenge
    Wang, Chenfeng
    Wang, Bingjie
    Yu, Bofu
    Fu, Xudong
    CATENA, 2024, 247
  • [24] Evolution of the Relationship between Runoff and Sediment Transport during Flood Event in the Chabagou Watershed of the Loess Plateau
    Yang, Qiannan
    Gao, Haidong
    Han, Yong
    Li, Zhanbin
    Lu, Kexin
    SUSTAINABILITY, 2022, 14 (18)
  • [25] Runoff change and sediment source during rainstorms in an ecologically constructed watershed on the Loess Plateau, China
    Li, Peng
    Xu, Guoce
    Lu, Kexin
    Zhang, Xiaoming
    Shi, Peng
    Bai, Lulu
    Ren, Zongping
    Pang, Guowei
    Xiao, Lie
    Gao, Haidong
    Pan, Minghang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 664 : 968 - 974
  • [26] Optimization of land use pattern reduces surface runoff and sediment loss in a Hilly-Gully watershed at the Loess Plateau, China
    Han, Yini
    Niu, Jianzhi
    Xin, Zhongbao
    Zhang, Wei
    Zhang, Tielin
    Wang, Xilin
    Zhang, Yousong
    FOREST SYSTEMS, 2016, 25 (01)
  • [27] Effects of grass vegetation coverage and position on runoff and sediment yields on the slope of Loess Plateau, China
    Shi, Peng
    Li, Peng
    Li, Zhanbin
    Sun, Jingmei
    Wang, Dejun
    Min, Zhiqiang
    AGRICULTURAL WATER MANAGEMENT, 2022, 259
  • [28] Characteristics of runoff and sediment yield in gullied-hilly loess areas and soil conservation measures
    Wang, Xingkui
    Xu, Shitao
    Li, Danxun
    Wang, Dianchang
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2001, 41 (08): : 107 - 109
  • [29] Effects of vegetation restoration on soil infiltrability and preferential flow in hilly gully areas of the Loess Plateau, China
    Qiu, Dexun
    Xu, Ruirui
    Wu, Changxue
    Mu, Xingmin
    Zhao, Guangju
    Gao, Peng
    CATENA, 2023, 221
  • [30] Characteristics of runoff and sediment load during flood events in the Upper Yangtze River, China
    Liu, Shangwu
    Wang, Dayu
    Miao, Wei
    Wang, Zhili
    Zhang, Peng
    Li, Danxun
    JOURNAL OF HYDROLOGY, 2023, 620