Nonconforming generalized multiscale finite element methods

被引:2
|
作者
Lee, Chak Shing [1 ]
Sheen, Dongwoo [2 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Seoul Natl Univ, Dept Math, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Generalized multiscale finite element method; Nonconforming method; Highly heterogeneous media; Oversampling; ELLIPTIC PROBLEMS; CROUZEIX-RAVIART; HOMOGENIZATION; MSFEM;
D O I
10.1016/j.cam.2016.07.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A framework is introduced for nonconforming multiscale approach based on GMsFEM (Generalized Multiscale Finite Element Method). Snapshot spaces are constructed for each macro-scale block. The snapshot spaces can be based on either conforming or nonconforming elements. With suitable dimension reduction, offline spaces are constructed. Moment function spaces are then introduced to impose continuity among the local offline spaces, which results in nonconforming GMsFE spaces. Oversampling and randomized boundary condition strategies are considered. Steps for the nonconforming GMsFEM are given explicitly. Error estimates are derived. Numerical results are presented to support the efficiency of the proposed approach. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:215 / 229
页数:15
相关论文
共 50 条
  • [41] Asymptotic lower bounds for eigenvalues by nonconforming finite element methods
    Armentano, MG
    Durán, RG
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2004, 17 : 93 - 101
  • [42] HOW TO PROVE THE DISCRETE RELIABILITY FOR NONCONFORMING FINITE ELEMENT METHODS
    Carstensen, Carsten
    Puttkammer, Sophie
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2020, 38 (01) : 142 - 175
  • [43] A new a priori error estimate of nonconforming finite element methods
    Hu Jun
    Ma Rui
    Shi ZhongCi
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (05) : 887 - 902
  • [44] A new a priori error estimate of nonconforming finite element methods
    Jun Hu
    Rui Ma
    ZhongCi Shi
    Science China Mathematics, 2014, 57 : 887 - 902
  • [45] Stability and convergence of nonconforming hp finite-element methods
    Seshaiyer, P
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 46 (01) : 165 - 182
  • [46] NONCONFORMING MIXED FINITE ELEMENT METHODS FOR STATIONARY INCOMPRESSIBLE MAGNETOHYDRODYNAMICS
    Shi, Dongyang
    Yu, Zhiyun
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (04) : 904 - 919
  • [48] Projection stabilized nonconforming finite element methods for the stokes problem
    Achchab, Boujemaa
    Agouzal, Abdellatif
    Bouihat, Khalid
    Majdoubi, Adil
    Souissi, Ali
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (01) : 218 - 240
  • [49] A STABILIZED NONCONFORMING QUADRILATERAL FINITE ELEMENT METHOD FOR THE GENERALIZED STOKES EQUATIONS
    Wang, Zhen
    Chen, Zhangxin
    Li, Jian
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2012, 9 (02) : 449 - 459
  • [50] An observation on Korn's inequality for nonconforming finite element methods
    Mardal, KA
    Winther, R
    MATHEMATICS OF COMPUTATION, 2006, 75 (253) : 1 - 6