Asymptotic lower bounds for eigenvalues by nonconforming finite element methods

被引:0
|
作者
Armentano, MG [1 ]
Durán, RG [1 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
关键词
finite elements; eigenvalue problems; nonconforming methods;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the approximation obtained for the eigenvalues of the Laplace operator by the nonconforming piecewise linear finite element of Crouzeix-Raviart. For singular eigenfunctions, as those arising in nonconvex polygons, we prove that the eigenvalues obtained with this method give lower bounds of the exact eigenvalues when the mesh size is small enough.
引用
收藏
页码:93 / 101
页数:9
相关论文
共 50 条