Changes in electricity production and microbial community evolution constructed wetland -microbial fuel cell exposed to wastewater containing Pb(II)

被引:48
|
作者
Zhao, CongCong [1 ]
Shang, DaWei [1 ,2 ]
Zou, YanLing [1 ,2 ]
Du, YuanDa [1 ]
Wang, Qian [1 ]
Xu, Fei [1 ]
Ren, Liang [4 ]
Kong, Qiang [1 ,3 ]
机构
[1] Shandong Normal Univ, Collaborat Innovat Ctr Human Nat & Green Dev Univ, Coll Geog & Environm, Jinan 250014, Peoples R China
[2] Shandong Normal Univ, Inst Environm & Ecol, Jinan 255014, Peoples R China
[3] Natl Univ Singapore, Dept Civil & Environm Engn, Singapore 117576, Singapore
[4] Jiangsu CRRC Environm CO LTD, Changzhou 215557, Jiangsu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
BIOELECTRICITY GENERATION; BACTERIAL COMMUNITY; LEAD RESISTANCE; AZO-DYE; REMOVAL; DEGRADATION; DENITRIFICATION; INTERFERENCE; ACCUMULATION; BIOSORPTION;
D O I
10.1016/j.scitotenv.2020.139127
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Two constructed wetland microbial fuel cell (CW-MFC) devices, experimental group (EG, with 5 mg/L Pb(II) addition) and control group (CG) were built to explore the changes in power generation, wastewater purification and microbial community structure under Pb(II) stress. The voltage of EG (343.16 ± 12.14 mV) was significantly higher (p < 0.01) than that of CG (295.49 ± 13.91 mV), and the highest power density of the EG and CG were 7.432 mW·m−2 and 3.873 mW·m−2, respectively. There was no significant difference in the removal of common pollutants between these groups except for the NH4 +-N removal efficiency, which was probably caused by the inhibition of the bioactivity of Comamonas (AOB) in the anode of the experimental group by Pb(II). Pb(II) was effectively removed by CW-MFC (84.86 ± 3%), and the abundant amount of fulvic acid-like matter in the extracellular polymeric substance (EPS) of the EG contributed to its removal. The presence of Pb(II) had a negative effect on both microbial community diversity and species richness. The abundance of a lead resistance gene, pbrT, decreased with long-term Pb(II) pressure. This is evidence of microbial adaptation to Pb(II). © 2020 Elsevier B.V.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Sustainable treatment of urban wastewater using a constructed wetland coupled with a microbial fuel cell
    Modini, Laura
    Pizarro, Ana
    Zerbatto, Mariel
    INGENIERIA DEL AGUA, 2023, 27 (04): : 283 - 293
  • [32] Enhanced wastewater treatment and electricity generation using stacked constructed wetland-microbial fuel cells
    Tamta, Prashansa
    Rani, Neetu
    Yadav, Asheesh Kumar
    ENVIRONMENTAL CHEMISTRY LETTERS, 2020, 18 (03) : 871 - 879
  • [33] Operation mechanism of constructed wetland-microbial fuel cells for wastewater treatment and electricity generation: A review
    Wang, Wenjing
    Zhang, Yu
    Li, Mengxiang
    Wei, Xiaogang
    Wang, Yali
    Liu, Ling
    Wang, Hongjie
    Shen, Shigang
    BIORESOURCE TECHNOLOGY, 2020, 314
  • [34] ELECTRICITY PRODUCTION COUPLED WITH WASTEWATER TREATMENT USING MICROBIAL FUEL CELL
    Vineetha, V.
    Shibu, K.
    2013 INTERNATIONAL CONFERENCE ON ENERGY EFFICIENT TECHNOLOGIES FOR SUSTAINABILITY (ICEETS), 2013,
  • [35] Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation
    Oon, Yoong-Ling
    Ong, Soon-An
    Ho, Li-Ngee
    Wong, Yee-Shian
    Oon, Yoong-Sin
    Lehl, Harvinder Kaur
    Thung, Wei-Eng
    BIORESOURCE TECHNOLOGY, 2015, 186 : 270 - 275
  • [36] Performance evaluation of three constructed wetland-microbial fuel cell systems: wastewater treatment efficiency and electricity generation potential
    Htet, Hsu Htet
    Dolphen, Rujira
    Jirasereeamornkul, Kamon
    Thiravetyan, Paitip
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (42) : 96163 - 96180
  • [37] Performance evaluation of three constructed wetland-microbial fuel cell systems: wastewater treatment efficiency and electricity generation potential
    Hsu Htet Htet
    Rujira Dolphen
    Kamon Jirasereeamornkul
    Paitip Thiravetyan
    Environmental Science and Pollution Research, 2023, 30 : 96163 - 96180
  • [38] Microbial community from tannery wastewater in microbial fuel cell
    Sawasdee V.
    Pisutpaisal N.
    Chemical Engineering Transactions, 2018, 64 : 397 - 402
  • [39] Nanomodification of the electrodes in microbial fuel cell: Impact of nanoparticle density on electricity production and microbial community
    Alatraktchi, Fatima AlZahra'a
    Zhang, Yifeng
    Angelidaki, Irini
    APPLIED ENERGY, 2014, 116 : 216 - 222
  • [40] Biodegradation of synthetic wastewater containing styrene in microbial fuel cell: Effect of adaptation of microbial community
    Oveisi, Fatemeh
    Fallah, Narges
    Nasernejad, Bahram
    FUEL, 2021, 305