Performance evaluation of three constructed wetland-microbial fuel cell systems: wastewater treatment efficiency and electricity generation potential

被引:2
|
作者
Htet, Hsu Htet [1 ]
Dolphen, Rujira [2 ]
Jirasereeamornkul, Kamon [3 ]
Thiravetyan, Paitip [1 ]
机构
[1] King Mongkuts Univ Technol Thonburi, Sch Bioresources & Technol, Bangkok 10150, Thailand
[2] King Mongkuts Univ Technol Thonburi, Pilot Plant Dev & Training Inst, Bangkok 10150, Thailand
[3] King Mongkuts Univ Technol Thonburi, Dept Elect & Telecommun Engn, Bangkok 10140, Thailand
关键词
Constructed wetland; Microbial fuel cell; Electricity generation; Domestic wastewater; Echinodorus cordifolius; ECHINODORUS-CORDIFOLIUS L; REMOVAL; TECHNOLOGY; RETENTION; GLYCOL;
D O I
10.1007/s11356-023-29185-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Constructed wetlands (CWs) have proven to be effective and environmentally friendly for removing pollutants, while microbial fuel cells (MFCs) offer the potential for electricity generation. Thus, this study evaluated the performance of three CW-MFC systems (zigzag, single-column, and triple-column continuous) for domestic wastewater treatment and electricity generation. Results showed that parallel connection of CW-MFCs significantly improved power generation compared to series connection. Additionally, using three copper wires to connect carbon fiber felt electrodes demonstrated superior pollutant capture capabilities compared to a single copper wire. During the 14-day testing period, the single-column system achieved the highest power density of 5.55 mW m(-2), followed closely by the triple-column continuous system at 4.77 mW m(-2). In contrast, the zigzag system exhibited a lower power density of 2.49 mW m(-2). Interestingly, the implementation of facultative anaerobic conditions in the anode, along with the application of a plastic bag cover, facilitated the maintenance of anaerobic conditions in both the single-column and triple-column continuous systems. This resulted in increased power density and reduced internal resistance. In contrast, the zigzag system, with its larger surface area, aeration, and circulation, exhibited higher internal resistance and lower current dissipation. Despite its inferior electricity generation performance, the zigzag system demonstrated higher efficiency removal of chemical oxygen demand (COD), nitrate (NO3-), and phosphate (PO43-) than the single-column system. This can be attributed to the extended contact time, resulting in enhanced pollutant removal. Overall, the multi-column continuous system shows promise as a viable approach for simultaneous domestic wastewater treatment and electricity production, offering potential benefits for sustainable wastewater management.
引用
收藏
页码:96163 / 96180
页数:18
相关论文
共 50 条
  • [1] Performance evaluation of three constructed wetland-microbial fuel cell systems: wastewater treatment efficiency and electricity generation potential
    Hsu Htet Htet
    Rujira Dolphen
    Kamon Jirasereeamornkul
    Paitip Thiravetyan
    [J]. Environmental Science and Pollution Research, 2023, 30 : 96163 - 96180
  • [2] Constructed Wetland-Microbial Fuel: Biotechnology for Simultaneous Wastewater Treatment and Electricity Generation
    Teoh, Tean Peng
    Ong, Soon An
    Wong, Yee Shian
    Ho, Li Ngee
    Noor, Norazian Mohamed
    Matei, Monica
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON GREEN ENVIRONMENTAL ENGINEERING AND TECHNOLOGY (ICONGEET 2021), 2022, 214 : 379 - 384
  • [3] Performance optimization and microbial community evaluation for domestic wastewater treatment in a constructed wetland-microbial fuel cell
    Yang, Houyun
    Chen, Jian
    Yu, Li
    Li, Weihua
    Huang, Xianhuai
    Qin, Qian
    Zhu, Shuguang
    [J]. ENVIRONMENTAL RESEARCH, 2022, 212
  • [4] Enhanced wastewater treatment and electricity generation using stacked constructed wetland-microbial fuel cells
    Tamta, Prashansa
    Rani, Neetu
    Yadav, Asheesh Kumar
    [J]. ENVIRONMENTAL CHEMISTRY LETTERS, 2020, 18 (03) : 871 - 879
  • [5] Enhanced Swine Wastewater Treatment by Constructed Wetland-Microbial Fuel Cell Systems
    Zhang, Yun
    Liu, Feng
    Lin, Yidong
    Sun, Lei
    Guo, Xinru
    Yang, Shuai
    He, Jinlong
    [J]. WATER, 2022, 14 (23)
  • [6] Operation mechanism of constructed wetland-microbial fuel cells for wastewater treatment and electricity generation: A review
    Wang, Wenjing
    Zhang, Yu
    Li, Mengxiang
    Wei, Xiaogang
    Wang, Yali
    Liu, Ling
    Wang, Hongjie
    Shen, Shigang
    [J]. BIORESOURCE TECHNOLOGY, 2020, 314
  • [7] Influence of evapotranspiration on wastewater treatment and electricity generation performance of constructed wetland integrated microbial fuel cell
    Mittal, Yamini
    Noori, Md. Tabish
    Saeed, Tanveer
    Yadav, Asheesh Kumar
    [J]. JOURNAL OF WATER PROCESS ENGINEERING, 2023, 53
  • [8] Treatment of Oil Wastewater and Electricity Generation by Integrating Constructed Wetland with Microbial Fuel Cell
    Yang, Qiao
    Wu, Zhenxing
    Liu, Lifen
    Zhang, Fengxiang
    Liang, Shengna
    [J]. MATERIALS, 2016, 9 (11):
  • [9] The Role of Wetland Plants on Wastewater Treatment and Electricity Generation in Constructed Wetland Coupled with Microbial Fuel Cell
    Li, Ke
    Qi, Jingyao
    Zhang, Fuguo
    Miwornunyuie, Nicholas
    Amaniampong, Paulette Serwaa
    Koomson, Desmond Ato
    Chen, Lei
    Yan, Yu
    Dong, Yanhong
    Setordjie, Victor Edem
    Samwini, Abigail Mwin-nea
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (16):
  • [10] Role of macrophyte species in constructed wetland-microbial fuel cell for simultaneous wastewater treatment and bioenergy generation
    Yang, Yan
    Zhao, Yaqian
    Tang, Cheng
    Xu, Lei
    Morgan, David
    Liu, Ranbin
    [J]. CHEMICAL ENGINEERING JOURNAL, 2020, 392