Basic Theory for Generalized Linear Solid Viscoelastic Models

被引:0
|
作者
McLaughlin, Joyce [1 ]
Thomas, Ashley [1 ]
Yoon, Jeong-Rock [2 ]
机构
[1] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
[2] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
来源
TOMOGRAPHY AND INVERSE TRANSPORT THEORY | 2011年 / 559卷
关键词
Viscoelasticity; generalized linear solids; existence; uniqueness; regularity of solutions;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the generalized linear solid model of viscoelastic wave propagation, which is modeled by a system of integro-differential equations. We show the existence and uniqueness of a weak solution to the initial-boundary value problem; we show that the solution has finite propagation speed; and we prove regularity results for the solution, depending on the regularity of the domain, the material parameters, the initial data, and the source function.
引用
收藏
页码:101 / +
页数:3
相关论文
共 50 条
  • [41] PERIODIC EXCITATION OF A FINITE LINEAR VISCOELASTIC SOLID
    LANGHAAR, HL
    BORESI, AP
    MILLER, RE
    NUCLEAR ENGINEERING AND DESIGN, 1974, 30 (03) : 349 - 368
  • [42] PREDICTION OF TRANSIENT RESPONSE OF A LINEAR VISCOELASTIC SOLID
    GOTTENBE.WG
    CHRISTEN.RM
    JOURNAL OF APPLIED MECHANICS, 1966, 33 (02): : 449 - &
  • [43] A Precise Integration Method for Linear Viscoelastic Solid
    刘靖华
    吴长春
    黄若煜
    Journal of Shanghai Jiaotong University, 2005, (01) : 57 - 60
  • [44] DECAY OF SPHERICAL WAVES IN A LINEAR VISCOELASTIC SOLID
    BLAKE, TR
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1974, 25 (06): : 783 - 789
  • [45] Linear Models are Most Favorable among Generalized Linear Models
    Lee, Kuan-Yun
    Courtade, Thomas A.
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 1213 - 1218
  • [46] Hierarchical generalized linear models
    Lee, Y
    Nelder, JA
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1996, 58 (04): : 619 - 656
  • [47] Holistic Generalized Linear Models
    Schwendinger, Benjamin
    Schwendinger, Florian
    Vana, Laura
    JOURNAL OF STATISTICAL SOFTWARE, 2024, 108 (07): : 1 - 49
  • [48] Generalized Weibull Linear Models
    Prudente, Andrea A.
    Cordeiro, Gauss M.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (20) : 3739 - 3755
  • [49] Sparsifying Generalized Linear Models
    Jambulapati, Arun
    Lee, James R.
    Liu, Yang P.
    Sidford, Aaron
    PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 1665 - 1675
  • [50] A tutorial on generalized linear models
    Myers, RH
    Montgomery, DC
    JOURNAL OF QUALITY TECHNOLOGY, 1997, 29 (03) : 274 - 291