Holistic Generalized Linear Models

被引:0
|
作者
Schwendinger, Benjamin [1 ]
Schwendinger, Florian [2 ]
Vana, Laura [3 ]
机构
[1] Tech Univ Wien, Inst Comp Technol, Gusshausstr 27-29, A-1040 Vienna, Austria
[2] Univ Klagenfurt, Dept Stat, Univ Str 65-67, A-9020 Klagenfurt, Austria
[3] Tech Univ Wien, Inst Stat & Math Methods Econ, CSTAT Computat Stat, Wiedner Hauptstr 7, A-1040 Vienna, Austria
来源
JOURNAL OF STATISTICAL SOFTWARE | 2024年 / 108卷 / 07期
基金
奥地利科学基金会;
关键词
algorithmic regression; best subset selection; conic programming; holistic con- straints; optimization; R; SELECTION; INFERENCE; CONSTRAINTS; REGRESSION;
D O I
10.18637/jss.v108.i07
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Holistic linear regression extends the classical best subset selection problem by adding additional constraints designed to improve the model quality. These constraints include sparsity -inducing constraints, sign -coherence constraints and linear constraints. The R package holiglm provides functionality to model and fit holistic generalized linear models. By making use of state-of-the-art mixed -integer conic solvers, the package can reliably solve generalized linear models for Gaussian, binomial and Poisson responses with a multitude of holistic constraints. The high-level interface simplifies the constraint specification and can be used as a drop -in replacement for the stats::glm() function.
引用
收藏
页码:1 / 49
页数:49
相关论文
共 50 条
  • [1] Use generalized linear models or generalized partially linear models?
    Li, Xinmin
    Liang, Haozhe
    Haerdle, Wolfgang
    Liang, Hua
    [J]. STATISTICS AND COMPUTING, 2023, 33 (05)
  • [2] Use generalized linear models or generalized partially linear models?
    Xinmin Li
    Haozhe Liang
    Wolfgang Härdle
    Hua Liang
    [J]. Statistics and Computing, 2023, 33
  • [3] Generalized linear models
    Neuhaus, John
    McCulloch, Charles
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2011, 3 (05): : 407 - 413
  • [4] Generalized linear models
    McCulloch, CE
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (452) : 1320 - 1324
  • [5] Generalized linear models
    Burzykowski, Tomasz
    Geubbelmans, Melvin
    Rousseau, Axel-Jan
    Valkenborg, Dirk
    [J]. AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2023, 164 (04) : 604 - 606
  • [6] GENERALIZED LINEAR MODELS
    NELDER, JA
    WEDDERBURN, RW
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-GENERAL, 1972, 135 (03): : 370 - +
  • [7] Generalized linear models
    Zezula, Ivan
    [J]. BIOMETRIC METHODS AND MODELS IN CURRENT SCIENCE AND RESEARCH, 2011, : 39 - 58
  • [8] Linear Models are Most Favorable among Generalized Linear Models
    Lee, Kuan-Yun
    Courtade, Thomas A.
    [J]. 2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 1213 - 1218
  • [9] Hierarchical generalized linear models
    Lee, Y
    Nelder, JA
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1996, 58 (04): : 619 - 656
  • [10] Sparsifying Generalized Linear Models
    Jambulapati, Arun
    Lee, James R.
    Liu, Yang P.
    Sidford, Aaron
    [J]. PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 1665 - 1675