OPTIMAL EMBEDDINGS OF GENERALIZED INHOMOGENEOUS SOBOLEV SPACES ON Rn

被引:0
|
作者
Ahmed, Irshaad [1 ]
Karadzhov, Georgi E. [2 ]
机构
[1] Govt Coll Univ, Abdus Salam Sch Math Sci, Lahore, Pakistan
[2] Bulgarian Acad Sci, Inst Math & Informat, Sofia, Bulgaria
来源
关键词
Sobolev inhomogeneous spaces; optimal embeddings; rearrangement invariant spaces; INEQUALITIES; SYMMETRIZATION; IMBEDDINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove optimal embeddings in the subcritical case of the inhomogeneous Sobolev spaces built-up over function spaces in R-n with K-monotone and rearrangement invariant norm into another rearrangement invariant function spaces. The investigation is based on pointwise and integral estimates of the rearrangement or the oscillation of the rearrangement of f in terms of the rearrangement of the derivatives of f.
引用
收藏
页码:737 / 745
页数:9
相关论文
共 50 条
  • [11] OPTIMAL EMBEDDINGS OF GENERALIZED BESOV SPACES
    Bashir, Z.
    Karadzhov, G. E.
    EURASIAN MATHEMATICAL JOURNAL, 2011, 2 (01): : 5 - 31
  • [12] Optimal Orlicz domains in Sobolev embeddings into Marcinkiewicz spaces
    Musil, Vit
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (07) : 2653 - 2690
  • [13] Optimal Domain Spaces in Orlicz-Sobolev Embeddings
    Cianchi, Andrea
    Musil, Vit
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2019, 68 (03) : 925 - 966
  • [14] Optimal embeddings of critical Sobolev-Lorentz-Zygmund spaces
    Wadade, Hidemitsu
    STUDIA MATHEMATICA, 2014, 223 (01) : 77 - 95
  • [15] Optimal Rearrangement Invariant Sobolev Embeddings in Mixed Norm Spaces
    Clavero, Nadia
    Soria, Javier
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (04) : 2930 - 2954
  • [16] Optimal Rearrangement Invariant Sobolev Embeddings in Mixed Norm Spaces
    Nadia Clavero
    Javier Soria
    The Journal of Geometric Analysis, 2016, 26 : 2930 - 2954
  • [18] Optimal Regularity Properties of the Generalized Sobolev Spaces
    Karadzhov, G. E.
    Mehmood, Qaisar
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [19] COMPACTNESS OF EMBEDDINGS OF SOBOLEV SPACES
    DUC, DM
    DUNG, L
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1989, 40 : 105 - 119
  • [20] EMBEDDINGS OF ANISOTROPIC SOBOLEV SPACES
    EDMUNDS, DE
    EDMUNDS, RM
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1986, 94 (03) : 245 - 252