Multi-scale View-based Convolutional Neural Network for Breast Cancer Classification in Ultrasound Images

被引:1
|
作者
Meng, Hui [1 ,2 ]
Li, Qingfeng [1 ,2 ]
Liu, Xuefeng [1 ,2 ]
Wang, Yong [3 ]
Niu, Jianwei [1 ,2 ]
机构
[1] Beihang Univ, Res Ctr Big Data & Computat Intelligence, Hangzhou Innovat Inst, Hangzhou 310051, Peoples R China
[2] Beihang Univ, Sch Comp Sci & Engn, Beijing 100083, Peoples R China
[3] Chinese Acad Med Sci & Peking Union Med Coll, Natl Canc Ctr, Dept Diagnost Ultrasound, Beijing 100021, Peoples R China
基金
中国国家自然科学基金;
关键词
Breast cancer; ultrasound; multi-scale view; convolutional neural network (CNN); DIAGNOSIS; TECHNOLOGIES;
D O I
10.1117/12.2581918
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Breast cancer is the second leading cause of cancer-related death in women. Ultrasound imaging has been widely used for the early detection of breast cancer because of its superior ability in imaging dense breast tissue and its lack of ionizing radiation However, ultrasound imaging heavily depends on practitioners' experience and thus becomes relatively subjective. In this work, we proposed a novel multi-scale view-based convolutional neural network (MSV-CNN) to assist doctors to diagnose and improve classification accuracy. MSV-CNN takes full images, regions of interest (ROI), and the tumor regions with two times size of the ROI as input. It adopts three complementary branches to learn multi-scale view features from different views. The sub-networks in all branches have the same structure but with different parameters. The output of three branches is finally concatenated and fused by a fully connected layer for automated nodule classification. To assess the performance of our proposed network, we implemented breast ultrasound classification on the dataset containing 1560 images with benign nodules and 5367 images with malignant nodules. Furthermore, ResNet-18 models trained with different views were utilized as baselines. Experimental results showed that MSV-CNN achieved an average classification accuracy of 0.907. This preliminary study demonstrated that our proposed method is effective in the discrimination of breast nodules.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Histopathological Classification of Breast Cancer Images Using a Multi-Scale Input and Multi-Feature Network
    Sheikh, Taimoor Shakeel
    Lee, Yonghee
    Cho, Migyung
    CANCERS, 2020, 12 (08) : 1 - 21
  • [42] MULTI-SCALE DILATED RESIDUAL CONVOLUTIONAL NEURAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Pooja, Kumari
    Nidamanuri, Rama Rao
    Mishra, Deepak
    2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,
  • [43] Macular OCT Classification Using a Multi-Scale Convolutional Neural Network Ensemble
    Rasti, Reza
    Rabbani, Hossein
    Mehridehnavi, Alireza
    Hajizadeh, Fedra
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (04) : 1024 - 1034
  • [44] ECG Hearbeat Classification Based on Multi-scale Convolutional Neural Networks
    Rozinek, Ondrej
    Dolezel, Petr
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2023, PT II, 2023, 14135 : 352 - 363
  • [45] A Convolutional Neural Network and Graph Convolutional Network Based Framework for Classification of Breast Histopathological Images
    Gao, Zhiyang
    Lu, Zhiyang
    Wang, Jun
    Ying, Shihui
    Shi, Jun
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (07) : 3163 - 3173
  • [46] Hyperspectral image classification based on multi-scale hybrid convolutional network
    Yang, Yun
    Zhou, Yao
    Chen, Jia-ning
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2023, 38 (03) : 368 - 377
  • [47] A Multi-scale Convolutional Attention Based GRU Network for Text Classification
    Tang, Xianlun
    Chen, Yingjie
    Dai, Yuyan
    Xu, Jin
    Peng, Deguang
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 3009 - 3013
  • [48] Land cover classification from remote sensing images based on multi-scale fully convolutional network
    Li, Rui
    Zheng, Shunyi
    Duan, Chenxi
    Wang, Libo
    Zhang, Ce
    GEO-SPATIAL INFORMATION SCIENCE, 2022, 25 (02) : 278 - 294
  • [49] An Efficient Multi-Scale Convolutional Neural Network Based Multi-Class Brain MRI Classification for SaMD
    Yazdan, Syed Ali
    Ahmad, Rashid
    Iqbal, Naeem
    Rizwan, Atif
    Khan, Anam Nawaz
    Kim, Do-Hyeun
    TOMOGRAPHY, 2022, 8 (04) : 1905 - 1927
  • [50] A Multi-View Multi-Scale Neural Network for Multi-Label ECG Classification
    Yang, Shunxiang
    Lian, Cheng
    Zeng, Zhigang
    Xu, Bingrong
    Zang, Junbin
    Zhang, Zhidong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (03): : 648 - 660