Macular OCT Classification Using a Multi-Scale Convolutional Neural Network Ensemble

被引:194
|
作者
Rasti, Reza [1 ]
Rabbani, Hossein [1 ]
Mehridehnavi, Alireza [1 ]
Hajizadeh, Fedra [2 ]
机构
[1] Isfahan Univ Med Sci, Sch Adv Technol Med, Dept Biomed Engn, Med Image & Signal Proc Res Ctr, Esfahan 8174673461, Iran
[2] Noor Eye Hosp, Noor Ophthalmol Res Ctr, Tehran 1968653111, Iran
关键词
CAD system; classification; macular pathology; Multi-scale Convolutional Mixture of Experts (MCME); Optical Coherence Tomography (OCT); OPTICAL COHERENCE TOMOGRAPHY; LAYER SEGMENTATION; MIXTURE; EXPERTS; DEGENERATION; IMAGES; RECOGNITION; DIAGNOSIS; BURDEN; FACE;
D O I
10.1109/TMI.2017.2780115
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Computer-aided diagnosis (CAD) of retinal pathologies is a current active area in medical image analysis. Due to the increasing use of retinal optical coherence tomography (OCT) imaging technique, a CAD system in retinal OCT is essential to assist ophthalmologist in the early detection of ocular diseases and treatment monitoring. This paper presents a novel CAD system based on a multi-scale convolutional mixture of expert (MCME) ensemble model to identify normal retina, and two common types of macular pathologies, namely, dry age-related macular degeneration, and diabetic macular edema. The proposed MCME modular model is a data-driven neural structure, which employs a new cost function for discriminative and fast learning of image features by applying convolutional neural networks on multiple-scale sub-images. MCME maximizes the likelihood function of the training data set and ground truth by considering a mixture model, which tries also to model the joint interaction between individual experts by using a correlated multivariate component for each expert module instead of only modeling the marginal distributions by independent Gaussian components. Two different macular OCT data sets from Heidelberg devices were considered for the evaluation of the method, i.e., a local data set of OCT images of 148 subjects and a public data set of 45 OCT acquisitions. For comparison purpose, we performed a wide range of classification measures to compare the results with the best configurations of the MCME method. With the MCME model of four scale-dependent experts, the precision rate of 98.86%, and the area under the receiver operating characteristic curve (AUC) of 0.9985 were obtained on average.
引用
收藏
页码:1024 / 1034
页数:11
相关论文
共 50 条
  • [1] Birdsong classification based on ensemble multi-scale convolutional neural network
    Liu, Jiang
    Zhang, Yan
    Lv, Danjv
    Lu, Jing
    Xie, Shanshan
    Zi, Jiali
    Yin, Yue
    Xu, Haifeng
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] Birdsong classification based on ensemble multi-scale convolutional neural network
    Jiang Liu
    Yan Zhang
    Danjv Lv
    Jing Lu
    Shanshan Xie
    Jiali Zi
    Yue Yin
    Haifeng Xu
    Scientific Reports, 12
  • [3] Multi-scale convolutional neural network for automated AMD classification using retinal OCT images
    Sotoudeh-Paima, Saman
    Jodeiri, Ata
    Hajizadeh, Fedra
    Soltanian-Zadeh, Hamid
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 144
  • [4] Multi-Scale Convolutional Neural Network Ensemble for Multi-Class Arrhythmia Classification
    Prabhakararao, Eedara
    Dandapat, Samarendra
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (08) : 3802 - 3812
  • [5] A multi-scale convolutional neural network for heartbeat classification
    Zheng, Lesong
    Zhang, Miao
    Qiu, Lishen
    Ma, Gang
    Zhu, Wenliang
    Wang, Lirong
    2021 IEEE 20TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2021), 2021, : 1488 - 1492
  • [6] Automatic Modulation Classification Using Multi-Scale Convolutional Neural Network
    Chen, Hongtai
    Guo, Li
    Dong, Chao
    Cong, Fuze
    Mu, Xidong
    2020 IEEE 31ST ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (IEEE PIMRC), 2020,
  • [7] Multi-scale Convolutional Neural Network for Remote Sensing Scene Classification
    Alhichri, Haikel
    Alajlan, Naif
    Bazi, Yakoub
    Rabczuk, Timon
    2018 IEEE INTERNATIONAL CONFERENCE ON ELECTRO/INFORMATION TECHNOLOGY (EIT), 2018, : 113 - 117
  • [8] A novel multi-scale convolutional neural network for motor imagery classification
    Riyad, Mouad
    Khalil, Mohammed
    Adib, Abdellah
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 68
  • [9] Multi-scale Attention Convolutional Neural Network for time series classification
    Chen, Wei
    Shi, Ke
    NEURAL NETWORKS, 2021, 136 (136) : 126 - 140
  • [10] Image Classification Method Based on Multi-Scale Convolutional Neural Network
    Du, Shaobo
    Li, Jing
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (10)