Macular OCT Classification Using a Multi-Scale Convolutional Neural Network Ensemble

被引:194
|
作者
Rasti, Reza [1 ]
Rabbani, Hossein [1 ]
Mehridehnavi, Alireza [1 ]
Hajizadeh, Fedra [2 ]
机构
[1] Isfahan Univ Med Sci, Sch Adv Technol Med, Dept Biomed Engn, Med Image & Signal Proc Res Ctr, Esfahan 8174673461, Iran
[2] Noor Eye Hosp, Noor Ophthalmol Res Ctr, Tehran 1968653111, Iran
关键词
CAD system; classification; macular pathology; Multi-scale Convolutional Mixture of Experts (MCME); Optical Coherence Tomography (OCT); OPTICAL COHERENCE TOMOGRAPHY; LAYER SEGMENTATION; MIXTURE; EXPERTS; DEGENERATION; IMAGES; RECOGNITION; DIAGNOSIS; BURDEN; FACE;
D O I
10.1109/TMI.2017.2780115
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Computer-aided diagnosis (CAD) of retinal pathologies is a current active area in medical image analysis. Due to the increasing use of retinal optical coherence tomography (OCT) imaging technique, a CAD system in retinal OCT is essential to assist ophthalmologist in the early detection of ocular diseases and treatment monitoring. This paper presents a novel CAD system based on a multi-scale convolutional mixture of expert (MCME) ensemble model to identify normal retina, and two common types of macular pathologies, namely, dry age-related macular degeneration, and diabetic macular edema. The proposed MCME modular model is a data-driven neural structure, which employs a new cost function for discriminative and fast learning of image features by applying convolutional neural networks on multiple-scale sub-images. MCME maximizes the likelihood function of the training data set and ground truth by considering a mixture model, which tries also to model the joint interaction between individual experts by using a correlated multivariate component for each expert module instead of only modeling the marginal distributions by independent Gaussian components. Two different macular OCT data sets from Heidelberg devices were considered for the evaluation of the method, i.e., a local data set of OCT images of 148 subjects and a public data set of 45 OCT acquisitions. For comparison purpose, we performed a wide range of classification measures to compare the results with the best configurations of the MCME method. With the MCME model of four scale-dependent experts, the precision rate of 98.86%, and the area under the receiver operating characteristic curve (AUC) of 0.9985 were obtained on average.
引用
收藏
页码:1024 / 1034
页数:11
相关论文
共 50 条
  • [31] A multi-scale pooling convolutional neural network for accurate steel surface defects classification
    Fu, Guizhong
    Zhang, Zengguang
    Le, Wenwu
    Li, Jinbin
    Zhu, Qixin
    Niu, Fuzhou
    Chen, Hao
    Sun, Fangyuan
    Shen, Yehu
    FRONTIERS IN NEUROROBOTICS, 2023, 17
  • [32] A Multi-Scale Densely Connected Convolutional Neural Network for Automated Thyroid Nodule Classification
    Wang, Luoyan
    Zhou, Xiaogen
    Nie, Xingqing
    Lin, Xingtao
    Li, Jing
    Zheng, Haonan
    Xue, Ensheng
    Chen, Shun
    Chen, Cong
    Du, Min
    Tong, Tong
    Gao, Qinquan
    Zheng, Meijuan
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [33] MSFF: A Multi-Scale Feature Fusion Convolutional Neural Network for Hyperspectral Image Classification
    Gong, Gu
    Wang, Xiaopeng
    Zhang, Jiahua
    Shang, Xiaodi
    Pan, Zhicheng
    Li, Zhiyuan
    Zhang, Junshi
    ELECTRONICS, 2025, 14 (04):
  • [34] Remote Sensing Image Fusion Using Multi-Scale Convolutional Neural Network
    Wei Shi
    ChaoBen Du
    BingBing Gao
    JiNing Yan
    Journal of the Indian Society of Remote Sensing, 2021, 49 : 1677 - 1687
  • [35] A neural network ensemble method for effective crack segmentation using fully convolutional networks and multi-scale structured forests
    Wang, Sen
    Wu, Xing
    Zhang, Yinghui
    Liu, Xiaoqin
    Zhao, Lun
    MACHINE VISION AND APPLICATIONS, 2020, 31 (7-8)
  • [36] Novel Approach in Vegetation Detection Using Multi-Scale Convolutional Neural Network
    Albalooshi, Fatema A.
    APPLIED SCIENCES-BASEL, 2024, 14 (22):
  • [37] PulseID: Multi-scale photoplethysmographic identification using a deep convolutional neural network
    Wei, Riling
    Xu, Xiaogang
    Li, Yue
    Zhang, Yiyi
    Wang, Jun
    Chen, Hanjie
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 88
  • [38] A neural network ensemble method for effective crack segmentation using fully convolutional networks and multi-scale structured forests
    Sen Wang
    Xing Wu
    Yinghui Zhang
    Xiaoqin Liu
    Lun Zhao
    Machine Vision and Applications, 2020, 31
  • [39] Remote Sensing Image Fusion Using Multi-Scale Convolutional Neural Network
    Shi, Wei
    Du, ChaoBen
    Gao, BingBing
    Yan, JiNing
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2021, 49 (07) : 1677 - 1687
  • [40] MSNet: Multi-Scale Convolutional Network for Point Cloud Classification
    Wang, Lei
    Huang, Yuchun
    Shan, Jie
    He, Liu
    REMOTE SENSING, 2018, 10 (04)