Spectral Reflectance Estimation of UAS Multispectral Imagery Using Satellite Cross-Calibration Method

被引:2
|
作者
Gowravaram, Saket [1 ]
Chao, Haiyang [1 ]
Molthan, Andrew [2 ]
Zhao, Tiebiao [3 ]
Tian, Pengzhi [1 ]
Flanagan, Harold [1 ]
Schultz, Lori [4 ]
Bell, Jordan [2 ]
机构
[1] Univ Kansas, Lawrence, KS 66045 USA
[2] NASA Marshall Space Flight Ctr, Huntsville, AL 35808 USA
[3] Univ Calif, Merced, CA 95343 USA
[4] Univ Alabama, Huntsville, AL 35487 USA
来源
关键词
RADIOMETRIC CALIBRATION; GRASSLAND; PARAMETERS; MANAGEMENT; RETRIEVAL; AIRCRAFT;
D O I
10.14358/PERS.20-00091R2
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
This paper introduces a satellite-based cross-calibration (SCC) method for spectral reflectance estimation of unmanned aircraft system (UAS) multispectral imagery. The SCC method provides a low-cost and feasible solution to convert high-resolution UAS images in digital numbers (DN) to reflectance when satellite data is available. The proposed method is evaluated using a multispectral data set, including orthorectified KHawk UAS DN imagery and Landsat 8 Operational Land Imager Level-2 surface reflectance (SR) data over a forest/grassland area. The estimated UAS reflectance images are compared with the National Ecological Observatory Network's imaging spectrometer (NIS) SR data for validation. The UAS reflectance showed high similarities with the NIS data for the near-infrared and red bands with Pearson's r values being 97 and 95.74, and root-mean-square errors being 0.0239 and 0.0096 over a 32-subplot hayfield.
引用
收藏
页码:735 / 746
页数:12
相关论文
共 50 条
  • [21] Inter-satellite cross-calibration:: Integration of reflectance and NDVI from different satellites by means of a linear model
    Beltrán, CM
    Belmonte, AC
    Jochum, A
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY V, 2004, 5232 : 128 - 139
  • [22] Aspects of the Cross-Calibration Method in Laser Goniometry
    P. A. Pavlov
    Measurement Techniques, 2015, 58 : 970 - 974
  • [23] Aspects of the Cross-Calibration Method in Laser Goniometry
    Pavlov, P. A.
    MEASUREMENT TECHNIQUES, 2015, 58 (09) : 970 - 974
  • [24] Estimation of subpixel vegetation density of natural regions using satellite multispectral imagery
    Jasinski, MF
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1996, 34 (03): : 804 - 813
  • [25] Consideration of Radiometric Quantization Error in Satellite Sensor Cross-Calibration
    Bhatt, Rajendra
    Doelling, David
    Haney, Conor
    Scarino, Benjamin
    Gopalan, Arun
    REMOTE SENSING, 2018, 10 (07):
  • [26] Applications of Spectral Band Adjustment Factors (SBAF) for Cross-Calibration
    Chander, Gyanesh
    Mishra, Nischal
    Helder, Dennis L.
    Aaron, David B.
    Angal, Amit
    Choi, Taeyoung
    Xiong, Xiaoxiong
    Doelling, David R.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (03): : 1267 - 1281
  • [27] Spectral Reconstruction From Satellite Multispectral Imagery Using Convolution and Transformer Joint Network
    Du, Dakuan
    Gu, Yanfeng
    Liu, Tianzhu
    Li, Xian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [28] Estimating of Streamflow Using Multispectral Satellite Imagery
    Kim, Jin-Gyeom
    Kang, Boosik
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON MODELLING, SIMULATION AND APPLIED MATHEMATICS (MSAM2017), 2017, 132 : 161 - 163
  • [29] Regional in situ validation of satellite altimeters: Calibration and cross-calibration results at the Corsican sites
    Cancet, M.
    Bijac, S.
    Chimot, J.
    Bonnefond, P.
    Jeansou, E.
    Laurain, O.
    Lyard, F.
    Bronner, E.
    Femenias, P.
    ADVANCES IN SPACE RESEARCH, 2013, 51 (08) : 1400 - 1417
  • [30] Investigation on functional form in cross-calibration of spectral vegetation index
    Yoshioka, Hiroki
    Miura, Tomoaki
    Yamamoto, Hirokazu
    REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY III, 2006, 6298