Slowing down the speed of light using an electromagnetically-induced-transparency mechanism in a modified reservoir

被引:23
|
作者
Liu, Ronggang [1 ]
Liu, Tong [2 ]
Wang, Yingying [3 ]
Li, Yujie [4 ]
Gai, Bingzheng [5 ]
机构
[1] Harbin Inst Technol, Dept Civil Engn, Weihai 264209, Peoples R China
[2] Aerosp Res Inst Mat & Proc Technol, Beijing 10076, Peoples R China
[3] Harbin Inst Technol, Dept Optoelect Sci, Weihai 264209, Peoples R China
[4] Harbin Inst Technol, Sch Mat Sci & Engn, Weihai 264209, Peoples R China
[5] Harbin Inst Technol, Dept Astronaut Sci & Mech, Harbin 150001, Heilongjiang, Peoples R China
关键词
SPONTANEOUS EMISSION; PHOTONIC CRYSTAL; WAVE-GUIDE; ATOMIC MEDIUM; BAND-EDGES; SYSTEM; FILTER;
D O I
10.1103/PhysRevA.96.053823
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose an effective method to achieve extremely slow light by using both the mechanism of electromagnetically induced transparency (EIT) and the localization of a coupled cavity waveguide (CCW). Based on quantum mechanics theory and the dispersion relation of a CCW, we derive a group-velocity formula that reveals both the effects of the EIT and CCW. Results show that ultralow light velocity at the order of several meters per second or even static light, could be obtained feasibly. In comparison with the EIT mechanism in a background of vacuum, this proposed method is more effective and realistic to achieve extremely slow light. And it exhibits potential values in the field of light storage.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Dual control of slow light in reciprocal electromagnetically-induced-transparency conditions
    Dziczek, Dariusz
    Chwirot, Stanislaw
    [J]. PHYSICAL REVIEW A, 2009, 79 (04):
  • [2] Slow-light dynamics from electromagnetically-induced-transparency spectra
    Klein, M.
    Hohensee, M.
    Xiao, Y.
    Kalra, R.
    Phillips, D. F.
    Walsworth, R. L.
    [J]. PHYSICAL REVIEW A, 2009, 79 (05):
  • [3] Parametric amplification in an electromagnetically-induced-transparency medium
    Harada, Ken-ichi
    Mori, Kenji
    Okuma, Junji
    Hayashi, Nobuhito
    Mitsunaga, Masaharu
    [J]. PHYSICAL REVIEW A, 2008, 78 (01):
  • [4] Dissipative light scattering by a trapped atom approaching electromagnetically-induced-transparency conditions
    Roghani, Maryam
    Breuer, Heinz-Peter
    Helm, Hanspeter
    [J]. PHYSICAL REVIEW A, 2010, 81 (03):
  • [5] Optimal atomic quantum sensing using electromagnetically-induced-transparency readout
    Meyer, David H.
    O'Brien, Christopher
    Fahey, Donald P.
    Cox, Kevin C.
    Kunz, Paul D.
    [J]. PHYSICAL REVIEW A, 2021, 104 (04)
  • [6] High-contrast transparency comb of the electromagnetically-induced-transparency memory
    Yang, Sheng-Jun
    Rui, Jun
    Dai, Han-Ning
    Jin, Xian-Min
    Chen, Shuai
    Pan, Jian-Wei
    [J]. PHYSICAL REVIEW A, 2018, 98 (03)
  • [7] Correlation spectroscopy in cold atoms: Light sideband resonances in electromagnetically-induced-transparency condition
    Florez, H. M.
    Kumar, A.
    Theophilo, K.
    Nussenzveig, P.
    Martinelli, M.
    [J]. PHYSICAL REVIEW A, 2016, 94 (01)
  • [8] Physical interpretation for the correlation spectra of electromagnetically-induced-transparency resonances
    Felinto, D.
    Cruz, L. S.
    de Oliveira, R. A.
    Florez, H. M.
    de Miranda, M. H. G.
    Nussenzveig, P.
    Martinelli, M.
    Tabosa, J. W. R.
    [J]. OPTICS EXPRESS, 2013, 21 (02): : 1512 - 1519
  • [9] Analogue of electromagnetically-induced-transparency based on graphene nanotube waveguide
    Wei, Buzheng
    Jian, Shuisheng
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (35)
  • [10] Dispersive optical nonlinearities in a Rydberg electromagnetically-induced-transparency medium
    Stanojevic, Jovica
    Parigi, Valentina
    Bimbard, Erwan
    Ourjoumtsev, Alexei
    Grangier, Philippe
    [J]. PHYSICAL REVIEW A, 2013, 88 (05):