Physical interpretation for the correlation spectra of electromagnetically-induced-transparency resonances

被引:12
|
作者
Felinto, D. [1 ]
Cruz, L. S. [2 ]
de Oliveira, R. A. [1 ]
Florez, H. M. [3 ]
de Miranda, M. H. G. [1 ,3 ]
Nussenzveig, P. [3 ]
Martinelli, M. [3 ]
Tabosa, J. W. R. [1 ]
机构
[1] Univ Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE, Brazil
[2] Univ Fed ABC, Santo Andre, SP, Brazil
[3] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
来源
OPTICS EXPRESS | 2013年 / 21卷 / 02期
基金
巴西圣保罗研究基金会;
关键词
NOISE; ANTICORRELATIONS;
D O I
10.1364/OE.21.001512
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The phenomenon called Electromagnetically Induced Transparency (EIT) may induce different types of correlation between two optical fields interacting with an ensemble of atoms. It is presently well known, for example, that in the vicinity of an EIT resonance the dominant correlations at low powers turn into anti-correlations as power increases. Such correlation spectra present striking power-broadening-independent features, with the best condition for measuring the characteristic linewidth occurring at the highest powers. In the present work we investigate the physical mechanisms responsible for this set of observations. Our approach is first to reproduce these effects in a better controlled experimental setup: a cold atomic ensemble, obtained from a magneto-optical trap. The results from this conceptually simpler system were then compared to a correspondingly simpler theory, which clearly relates the observed features to the interplay between two key aspects of EIT: the transparency itself and the steep normal dispersion near two-photon resonance. (C) 2013 Optical Society of America
引用
收藏
页码:1512 / 1519
页数:8
相关论文
共 50 条
  • [1] Correlation spectroscopy in cold atoms: Light sideband resonances in electromagnetically-induced-transparency condition
    Florez, H. M.
    Kumar, A.
    Theophilo, K.
    Nussenzveig, P.
    Martinelli, M.
    [J]. PHYSICAL REVIEW A, 2016, 94 (01)
  • [2] Slow-light dynamics from electromagnetically-induced-transparency spectra
    Klein, M.
    Hohensee, M.
    Xiao, Y.
    Kalra, R.
    Phillips, D. F.
    Walsworth, R. L.
    [J]. PHYSICAL REVIEW A, 2009, 79 (05):
  • [3] Electromagnetically-induced-transparency intensity-correlation power broadening in a buffer gas
    Zheng, Aojie
    Green, Alaina
    Crescimanno, Michael
    O'Leary, Shannon
    [J]. PHYSICAL REVIEW A, 2016, 93 (04)
  • [4] Parametric amplification in an electromagnetically-induced-transparency medium
    Harada, Ken-ichi
    Mori, Kenji
    Okuma, Junji
    Hayashi, Nobuhito
    Mitsunaga, Masaharu
    [J]. PHYSICAL REVIEW A, 2008, 78 (01):
  • [5] Experimental and theoretical investigation of a multimode cooling scheme using multiple electromagnetically-induced-transparency resonances
    Scharnhorst, Nils
    Cerrillo, Javier
    Kramer, Johannes
    Leroux, Ian D.
    Wuebbena, Jannes B.
    Retzker, Alex
    Schmidt, Piet O.
    [J]. PHYSICAL REVIEW A, 2018, 98 (02)
  • [6] High-contrast transparency comb of the electromagnetically-induced-transparency memory
    Yang, Sheng-Jun
    Rui, Jun
    Dai, Han-Ning
    Jin, Xian-Min
    Chen, Shuai
    Pan, Jian-Wei
    [J]. PHYSICAL REVIEW A, 2018, 98 (03)
  • [7] Nonlinear absorption in interacting Rydberg electromagnetically-induced-transparency spectra on two-photon resonance
    Tebben, Annika
    Hainaut, Clement
    Salzinger, Andre
    Geier, Sebastian
    Franz, Titus
    Pohl, Thomas
    Garttner, Martin
    Zurn, Gerhard
    Weidemuller, Matthias
    [J]. PHYSICAL REVIEW A, 2021, 103 (06)
  • [8] Analogue of electromagnetically-induced-transparency based on graphene nanotube waveguide
    Wei, Buzheng
    Jian, Shuisheng
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (35)
  • [9] Storage efficiency of probe pulses in an electromagnetically-induced-transparency medium
    Zhang, Rui
    Wang, Xiang-Bin
    [J]. PHYSICAL REVIEW A, 2016, 94 (06)
  • [10] Dispersive optical nonlinearities in a Rydberg electromagnetically-induced-transparency medium
    Stanojevic, Jovica
    Parigi, Valentina
    Bimbard, Erwan
    Ourjoumtsev, Alexei
    Grangier, Philippe
    [J]. PHYSICAL REVIEW A, 2013, 88 (05):