Optimal atomic quantum sensing using electromagnetically-induced-transparency readout

被引:26
|
作者
Meyer, David H. [1 ]
O'Brien, Christopher [2 ]
Fahey, Donald P. [1 ]
Cox, Kevin C. [1 ]
Kunz, Paul D. [1 ]
机构
[1] Army Res Lab, DEVCOM, Adelphi, MD 20783 USA
[2] Naval Air Warfare Ctr, China Lake, CA 93555 USA
关键词
PROJECTION NOISE; RYDBERG ATOM; OPTICS;
D O I
10.1103/PhysRevA.104.043103
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum sensors offer the capability to reach unprecedented precision by operating at the standard quantum limit (SQL) or beyond by using quantum entanglement. But an emerging class of quantum sensors that use Rydberg electromagnetically induced transparency (EIT) to detect rf electric fields have yet to reach the SQL. In this work we prove that this discrepancy is due to fundamental limitations in the EIT probing mechanism. We derive the optimum sensitivity of a three-level quantum sensor based on EIT, or more generally coherent spectroscopy, and compare this to the SQL. We apply a minimal set of assumptions, while allowing strong probing fields, thermal broadening, and large optical depth. We derive the optimal laser intensities and optical depth, providing specific guidelines for sensitive operation under common experimental conditions. Clear boundaries of performance are established, revealing that ladder-EIT cannot achieve the SQL due to unavoidable absorption loss. The results may be applied to any EIT-based quantum sensor, but we particularly emphasize our results' importance to the growing field of Rydberg quantum sensing.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Doppler-broadened quantum electromagnetically-induced-transparency heat engines
    Zhang, Xiao-Jun
    La Rocca, G. C.
    Artoni, M.
    Wang, Hai-Hua
    Wu, Jin-Hui
    [J]. PHYSICAL REVIEW A, 2021, 103 (06)
  • [2] Parametric amplification in an electromagnetically-induced-transparency medium
    Harada, Ken-ichi
    Mori, Kenji
    Okuma, Junji
    Hayashi, Nobuhito
    Mitsunaga, Masaharu
    [J]. PHYSICAL REVIEW A, 2008, 78 (01):
  • [3] Broadband quantum memory using electromagnetically induced transparency in atomic medium
    Bhushan, Sumit
    Chauhan, Vikas S.
    Easwaran, Raghavan K.
    [J]. JOURNAL OF MODERN OPTICS, 2019, 66 (09) : 992 - 997
  • [4] High-contrast transparency comb of the electromagnetically-induced-transparency memory
    Yang, Sheng-Jun
    Rui, Jun
    Dai, Han-Ning
    Jin, Xian-Min
    Chen, Shuai
    Pan, Jian-Wei
    [J]. PHYSICAL REVIEW A, 2018, 98 (03)
  • [5] Quantum theory for pulse propagation in electromagnetically-induced-transparency media beyond the adiabatic approximation
    Chuang, You-Lin
    Yu, Ite A.
    Lee, Ray-Kuang
    [J]. PHYSICAL REVIEW A, 2015, 91 (06):
  • [6] Possibility of inhomogeneous coupling leading to decoherence in an electromagnetically-induced-transparency quantum-memory process
    Liu, XJ
    Liu, ZX
    Liu, X
    Ge, ML
    [J]. PHYSICAL REVIEW A, 2006, 73 (01):
  • [7] Physical interpretation for the correlation spectra of electromagnetically-induced-transparency resonances
    Felinto, D.
    Cruz, L. S.
    de Oliveira, R. A.
    Florez, H. M.
    de Miranda, M. H. G.
    Nussenzveig, P.
    Martinelli, M.
    Tabosa, J. W. R.
    [J]. OPTICS EXPRESS, 2013, 21 (02): : 1512 - 1519
  • [8] Discerning quantum memories based on electromagnetically-induced-transparency and Autler-Townes-splitting protocols
    Rastogi, Anindya
    Aglamyurek, Erhan S.
    Hrushevskyi, Taras
    Hubele, Scott
    LeBlanc, Lindsay J.
    [J]. PHYSICAL REVIEW A, 2019, 100 (01)
  • [9] Analogue of electromagnetically-induced-transparency based on graphene nanotube waveguide
    Wei, Buzheng
    Jian, Shuisheng
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (35)
  • [10] Storage efficiency of probe pulses in an electromagnetically-induced-transparency medium
    Zhang, Rui
    Wang, Xiang-Bin
    [J]. PHYSICAL REVIEW A, 2016, 94 (06)