Energy cascade and intermittency in helically decomposed Navier-Stokes equations

被引:10
|
作者
Sahoo, Ganapati [1 ,2 ,3 ,4 ]
Biferale, Luca [3 ,4 ]
机构
[1] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
[2] Univ Helsinki, Dept Phys, Helsinki, Finland
[3] Univ Roma Tor Vergata, Dept Phys, Rome, Italy
[4] Univ Roma Tor Vergata, INFN, Rome, Italy
基金
欧洲研究理事会;
关键词
turbulence; helicity; intermittency; direct numerical simulations; 3-DIMENSIONAL HOMOGENEOUS TURBULENCE; ISOTROPIC TURBULENCE; HELICITY CASCADES; FLOWS; SIMULATIONS; DYNAMICS; NUMBER;
D O I
10.1088/1873-7005/aa839a
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the nature of the triadic interactions in Fourier space for three-dimensional Navier-Stokes equations based on the helicity content of the participating modes. Using the tool of helical Fourier decomposition we are able to access the effects of a group of triads on the energy cascade process and on the small-scale intermittency. We show that while triadic interactions involving modes with only one sign of helicity results to an inverse cascade of energy and to a complete depletion of the intermittency, absence of such triadic interactions has no visible effect on the energy cascade and on the inertial-range intermittency of the three-dimensional Navier-Stokes equations.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Localized energy equalities for the Navier-Stokes and the Euler equations
    Chae, Dongho
    ADVANCES IN MATHEMATICS, 2014, 254 : 69 - 78
  • [32] Recasting Navier-Stokes equations
    Reddy, M. H. Lakshminarayana
    Dadzie, S. Kokou
    Ocone, Raffaella
    Borg, Matthew K.
    Reese, Jason M.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2019, 3 (10):
  • [33] NAVIER-STOKES EQUATIONS ON THE β-PLANE
    Al-Jaboori, Mustafa A. H.
    Wirosoetisno, Djoko
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (03): : 687 - 701
  • [34] TRANSFORMATION OF NAVIER-STOKES EQUATIONS
    ROGERS, DF
    GRANGER, RA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (11): : 1331 - &
  • [35] FLUCTUATIONS IN NAVIER-STOKES EQUATIONS
    PAPANICOLAOU, GC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A236 - A236
  • [36] NAVIER-STOKES EQUATIONS PARADOX
    Ramm, Alexander G.
    REPORTS ON MATHEMATICAL PHYSICS, 2021, 88 (01) : 41 - 45
  • [37] STOCHASTIC NAVIER-STOKES EQUATIONS
    CAPINSKI, M
    CUTLAND, N
    ACTA APPLICANDAE MATHEMATICAE, 1991, 25 (01) : 59 - 85
  • [38] FRACTIONAL NAVIER-STOKES EQUATIONS
    Cholewa, Jan W.
    Dlotko, Tomasz
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (08): : 2967 - 2988
  • [39] Euler and Navier-Stokes equations
    Constantin, Peter
    PUBLICACIONS MATEMATIQUES, 2008, 52 (02) : 235 - 265
  • [40] On the Navier-Stokes equations on surfaces
    Pruess, Jan
    Simonett, Gieri
    Wilke, Mathias
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (03) : 3153 - 3179