Dynamical quantum phase transition for mixed states in open systems

被引:24
|
作者
Lang, Haifeng [1 ,2 ]
Chen, Yixin [3 ]
Hong, Qiantan [4 ]
Fan, Heng [1 ,5 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[2] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany
[3] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
[4] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[5] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
SIMULATOR;
D O I
10.1103/PhysRevB.98.134310
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Based on a kinematic approach in defining a geometric phase for a density matrix, we define the generalized Loschmidt overlap amplitude (GLOA) for an open system for arbitrary quantum evolution. The GLOA reduces to the Loschmidt overlap amplitude (LOA) with a modified dynamic phase for unitary evolution of a pure state, with the argument of the GLOA well defined by the geometric phase, thus possessing a similar physical interpretation to that of the LOA. The rate function for the GLOA exhibits nonanalyticity at a critical time, which corresponds to the dynamical quantum phase transition. We observe that the dynamical quantum phase transition related to GLOA is not destroyed under a finite temperature and weak enough dissipation. In particular, we find that an alternate type of dynamical quantum phase transition emerges in a dissipation system. The proposed GLOA provides a powerful tool in the investigation of a dynamical quantum phase transition in an arbitrary quantum system, which not only can characterize the robustness of the dynamical quantum phase transition but also can be used to search for new transitions.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] State and dynamical parameter estimation for open quantum systems
    Gambetta, J
    Wiseman, HM
    PHYSICAL REVIEW A, 2001, 64 (04): : 14
  • [42] The dynamical-quantization approach to open quantum systems
    Bolivar, A. O.
    ANNALS OF PHYSICS, 2012, 327 (03) : 705 - 732
  • [43] Decoherence as irreversible dynamical process in open quantum systems
    Blanchard, Philippe
    Olkiewicz, Robert
    OPEN QUANTUM SYSTEMS III: RECENT DEVELOPMENTS, 2006, 1882 : 117 - 160
  • [44] State and dynamical parameter estimation for open quantum systems
    Gambetta, J.
    Wiseman, H.M.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (04): : 421051 - 421051
  • [45] Measurement, filtering and control in quantum open dynamical systems
    Belavkin, VP
    REPORTS ON MATHEMATICAL PHYSICS, 1999, 43 (03) : 405 - 425
  • [46] Arbitrarily Accurate Dynamical Control in Open Quantum Systems
    Khodjasteh, Kaveh
    Lidar, Daniel A.
    Viola, Lorenza
    PHYSICAL REVIEW LETTERS, 2010, 104 (09)
  • [47] The quantum open systems approach to the dynamical Casimir effect
    Lombardo, F. C.
    Mazzitelli, F. D.
    PHYSICA SCRIPTA, 2010, 82 (03)
  • [48] Quantum phase transition of dynamical resistance in a mesoscopic capacitor
    Hamamoto, Yuji
    Jonckheere, Thibaut
    Kato, Takeo
    Martin, Thierry
    HORIBA INTERNATIONAL CONFERENCE: THE 19TH INTERNATIONAL CONFERENCE ON THE APPLICATION OF HIGH MAGNETIC FIELDS IN SEMICONDUCTOR PHYSICS AND NANOTECHNOLOGY, 2011, 334
  • [50] Dynamical quantum phase transition without an order parameter
    Kuliashov, O. N.
    Markov, A. A.
    Rubtsow, A. N.
    PHYSICAL REVIEW B, 2023, 107 (09)