Dynamical quantum phase transition without an order parameter

被引:4
|
作者
Kuliashov, O. N. [1 ,2 ]
Markov, A. A. [1 ,3 ]
Rubtsow, A. N. [1 ,3 ]
机构
[1] Russian Quantum Ctr, Moscow 121205, Russia
[2] Moscow Inst Phys & Technol, Dept Gen & Appl Phys, Dolgoprudnyi 141701, Russia
[3] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia
关键词
STATISTICAL-MECHANICS;
D O I
10.1103/PhysRevB.107.094304
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Short-time dynamics of many-body systems may exhibit nonanalytical behavior of the systems' properties at particular times, thus dubbed dynamical quantum phase transition. Simulations showed that in the presence of disorder, new critical times appear in the quench evolution of the Ising model. We study the physics behind these new critical times. We discuss the spectral features of the Ising model responsible for the disorder-induced phase transitions. We found the critical value of the disorder sufficient to induce the dynamical phase transition as a function of the number of spins. Most importantly, we argue that this dynamical phase transition while nontopological lacks a local order parameter.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Quenching a quantum critical state by the order parameter: Dynamical quantum phase transitions and quantum speed limits
    Heyl, Markus
    PHYSICAL REVIEW B, 2017, 95 (06)
  • [2] On the Order Parameter of the Continuous Phase Transition in the Classical and Quantum Mechanical Limits
    dos Santos, C. A. M.
    Oliveira, F. S.
    da Luz, M. S.
    Neumeier, J. J.
    BRAZILIAN JOURNAL OF PHYSICS, 2021, 51 (06) : 1529 - 1538
  • [3] On the Order Parameter of the Continuous Phase Transition in the Classical and Quantum Mechanical Limits
    C. A. M. dos Santos
    F. S. Oliveira
    M. S. da Luz
    J. J. Neumeier
    Brazilian Journal of Physics, 2021, 51 : 1529 - 1538
  • [4] Out-of-time-order correlations and Floquet dynamical quantum phase transition
    Zamani, Sara
    Jafari, R.
    Langari, A.
    PHYSICAL REVIEW B, 2022, 105 (09)
  • [5] Order parameter for the dynamical phase transition in Bose-Einstein condensates with topological modes
    Ramos, E. R. F.
    Sanz, L.
    Yukalov, V. I.
    Bagnato, V. S.
    PHYSICAL REVIEW A, 2007, 76 (03):
  • [6] Decoherence in a dynamical quantum phase transition
    Mostame, Sarah
    Schaller, Gernot
    Schuetzhold, Ralf
    PHYSICAL REVIEW A, 2010, 81 (03):
  • [7] Topological dynamical quantum phase transition in a quantum skyrmion phase
    Vijayan, Vipin
    Chotorlishvili, L.
    Ernst, A.
    Parkin, S. S. P.
    Katsnelson, M. I.
    Mishra, S. K.
    PHYSICAL REVIEW B, 2023, 107 (10)
  • [8] Measuring a dynamical topological order parameter in quantum walks
    Xu, Xiao-Ye
    Wang, Qin-Qin
    Heyl, Markus
    Budich, Jan Carl
    Pan, Wei-Wei
    Chen, Zhe
    Jan, Munsif
    Sun, Kai
    Xu, Jin-Shi
    Han, Yong-Jian
    Li, Chuan-Feng
    Guo, Guang-Can
    LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)
  • [9] Measuring a dynamical topological order parameter in quantum walks
    Xiao-Ye Xu
    Qin-Qin Wang
    Markus Heyl
    Jan Carl Budich
    Wei-Wei Pan
    Zhe Chen
    Munsif Jan
    Kai Sun
    Jin-Shi Xu
    Yong-Jian Han
    Chuan-Feng Li
    Guang-Can Guo
    Light: Science & Applications, 9
  • [10] Simple empirical order parameter for a first-order quantum phase transition in atomic nuclei
    Bonatsos, Dennis
    McCutchan, E. A.
    Casten, R. F.
    Casperson, R. J.
    PHYSICAL REVIEW LETTERS, 2008, 100 (14)