Using multivariate adaptive regression splines (MARS) in pavement roughness prediction

被引:0
|
作者
Attoh-Okine, NO [1 ]
Mensah, S
Nawaiseh, M
机构
[1] Univ Delaware, Dept Civil & Environm Engn, Newark, DE 19711 USA
[2] Florida Int Univ, Dept Civil & Environm Engn, Miami, FL 33199 USA
关键词
pavement design; roads & highways; statistical analysis;
D O I
10.1680/tran.2003.156.1.51
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The paper presents the application of a new statistical technique, multivariate adaptive regression splines (MARS), to a flexible pavement roughness prediction model. MARS is a non-parametric function estimation technique that shows great promise for fitting non-linear multivariate functions. The MARS approach was used to develop a roughness equation, based on available input, and was able to identify the threshold values of each input and the most important variables contributing to the roughness equation. The MARS technique allows easy interpretation of the relative importance of pavement condition variables, environmental factors and traffic for the overall fit.
引用
收藏
页码:51 / 55
页数:5
相关论文
共 50 条
  • [41] Predicting egg production in Chukar partridges using nonlinear models and multivariate adaptive regression splines (MARS) algorithm
    Sengul, T.
    Celik, S.
    Eyduran, E.
    Iqbal, F.
    [J]. EUROPEAN POULTRY SCIENCE, 2020, 84
  • [42] DESCRIPTION OF THE RELATIONSHIPS BETWEEN DIFFERENT PLANT CHARACTERISTICS IN SOYBEAN USING MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS) ALGORITHM
    Celik, S.
    Boydak, E.
    [J]. JOURNAL OF ANIMAL AND PLANT SCIENCES-JAPS, 2020, 30 (02): : 431 - 441
  • [43] Prediction on the volume ofnon-performingloans in Turkey using multivariate adaptive regression splines approach
    Depren, Serpil Kilic
    Kartal, Mustafa Tevfik
    [J]. INTERNATIONAL JOURNAL OF FINANCE & ECONOMICS, 2021, 26 (04) : 6395 - 6405
  • [44] Prediction of Penetration Resistance of a Spherical Penetrometer in Clay Using Multivariate Adaptive Regression Splines Model
    Sirimontree, Sayan
    Jearsiripongkul, Thira
    Van Qui Lai
    Eskandarinejad, Alireza
    Lawongkerd, Jintara
    Seehavong, Sorawit
    Thongchom, Chanachai
    Nuaklong, Peem
    Keawsawasvong, Suraparb
    [J]. SUSTAINABILITY, 2022, 14 (06)
  • [45] FOREX Rate Prediction: A Hybrid Approach Using Chaos Theory and Multivariate Adaptive Regression Splines
    Pradeepkumar, Dadabada
    Ravi, Vadlamani
    [J]. PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON FRONTIERS IN INTELLIGENT COMPUTING: THEORY AND APPLICATIONS, FICTA 2016, VOL 1, 2017, 515 : 219 - 227
  • [46] Concrete Dam Behavior Prediction Using Multivariate Adaptive Regression Splines with Measured Air Temperature
    Fei Kang
    Xi Liu
    Junjie Li
    [J]. Arabian Journal for Science and Engineering, 2019, 44 : 8661 - 8673
  • [47] Concrete Dam Behavior Prediction Using Multivariate Adaptive Regression Splines with Measured Air Temperature
    Kang, Fei
    Liu, Xi
    Li, Junjie
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2019, 44 (10) : 8661 - 8673
  • [48] MD-MARS: Maintainability Framework Based on Data Flow Prediction Using Multivariate Adaptive Regression Splines Algorithm in Wireless Sensor Network
    Pundir, Meena
    Sandhu, Jasminder Kaur
    Gupta, Deepali
    Gupta, Punit
    Juneja, Sapna
    Nauman, Ali
    Mahmoud, Amena
    [J]. IEEE ACCESS, 2023, 11 : 10604 - 10622
  • [49] Revisiting the Impact of Information Technology Investments on Productivity: An Empirical Investigation Using Multivariate Adaptive Regression Splines (MARS)
    Myung Ko
    Clark, Jan
    Ko, Daijin
    [J]. INFORMATION RESOURCES MANAGEMENT JOURNAL, 2008, 21 (03) : 1 - 23
  • [50] Multivariate wind power curve modeling using multivariate adaptive regression splines and regression trees
    Mushtaq, Khurram
    Zou, Runmin
    Waris, Asim
    Yang, Kaifeng
    Wang, Ji
    Iqbal, Javaid
    Jameel, Mohammed
    Mahfoodh, Al
    [J]. PLOS ONE, 2023, 18 (08):