Using multivariate adaptive regression splines (MARS) in pavement roughness prediction

被引:0
|
作者
Attoh-Okine, NO [1 ]
Mensah, S
Nawaiseh, M
机构
[1] Univ Delaware, Dept Civil & Environm Engn, Newark, DE 19711 USA
[2] Florida Int Univ, Dept Civil & Environm Engn, Miami, FL 33199 USA
关键词
pavement design; roads & highways; statistical analysis;
D O I
10.1680/tran.2003.156.1.51
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The paper presents the application of a new statistical technique, multivariate adaptive regression splines (MARS), to a flexible pavement roughness prediction model. MARS is a non-parametric function estimation technique that shows great promise for fitting non-linear multivariate functions. The MARS approach was used to develop a roughness equation, based on available input, and was able to identify the threshold values of each input and the most important variables contributing to the roughness equation. The MARS technique allows easy interpretation of the relative importance of pavement condition variables, environmental factors and traffic for the overall fit.
引用
收藏
页码:51 / 55
页数:5
相关论文
共 50 条
  • [21] Model selection in multivariate adaptive regression splines (MARS) using information complexity as the fitness function
    Koc, Elcin Kartal
    Bozdogan, Hamparsum
    [J]. MACHINE LEARNING, 2015, 101 (1-3) : 35 - 58
  • [22] Model selection in multivariate adaptive regression splines (MARS) using information complexity as the fitness function
    Elcin Kartal Koc
    Hamparsum Bozdogan
    [J]. Machine Learning, 2015, 101 : 35 - 58
  • [23] Reexamining the impact of information technology investment on productivity using regression tree and multivariate adaptive regression splines (MARS)
    Ko, Myung
    Osei-Bryson, Kweku-Muata
    [J]. INFORMATION TECHNOLOGY & MANAGEMENT, 2008, 9 (04): : 285 - 299
  • [24] Reexamining the impact of information technology investment on productivity using regression tree and multivariate adaptive regression splines (MARS)
    Myung Ko
    Kweku-Muata Osei-Bryson
    [J]. Information Technology and Management, 2008, 9 : 285 - 299
  • [25] Prediction of ultimate load capacity of concrete-filled steel tube columns using multivariate adaptive regression splines (MARS)
    Avci-Karatas, Cigdem
    [J]. STEEL AND COMPOSITE STRUCTURES, 2019, 33 (04): : 583 - 594
  • [26] Prediction of transportation energy demand: Multivariate Adaptive Regression Splines
    Sahraei, Mohammad Ali
    Duman, Hakan
    Codur, Muhammed Yasin
    Eyduran, Ecevit
    [J]. ENERGY, 2021, 224
  • [27] Wheat Yield Prediction in India Using Principal Component Analysis-Multivariate Adaptive Regression Splines (PCA-MARS)
    Nayana, B. M.
    Kumar, Kolla Rohit
    Chesneau, Christophe
    [J]. AGRIENGINEERING, 2022, 4 (02): : 461 - 474
  • [28] Application of Multivariate Adaptive Regression Splines (MARS) to the preference mapping of cheese sticks
    Xiong, R
    Meullenet, JF
    [J]. JOURNAL OF FOOD SCIENCE, 2004, 69 (04) : S131 - S139
  • [29] Application of Multivariate Adaptive Regression Splines (MARS) approach in prediction of compressive strength of eco-friendly concrete
    Naser, Ali H.
    Badr, Ali H.
    Henedy, Sadiq N.
    Ostrowski, Krzysztof Adam
    Imran, Hamza
    [J]. CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 17
  • [30] Prediction of Body Weight of Turkish Tazi Dogs using Data Mining Techniques: Classification and Regression Tree (CART) and Multivariate Adaptive Regression Splines (MARS)
    Celik, Senol
    Yilmaz, Orhan
    [J]. PAKISTAN JOURNAL OF ZOOLOGY, 2018, 50 (02) : 575 - 583