Using multivariate adaptive regression splines (MARS) in pavement roughness prediction

被引:0
|
作者
Attoh-Okine, NO [1 ]
Mensah, S
Nawaiseh, M
机构
[1] Univ Delaware, Dept Civil & Environm Engn, Newark, DE 19711 USA
[2] Florida Int Univ, Dept Civil & Environm Engn, Miami, FL 33199 USA
关键词
pavement design; roads & highways; statistical analysis;
D O I
10.1680/tran.2003.156.1.51
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The paper presents the application of a new statistical technique, multivariate adaptive regression splines (MARS), to a flexible pavement roughness prediction model. MARS is a non-parametric function estimation technique that shows great promise for fitting non-linear multivariate functions. The MARS approach was used to develop a roughness equation, based on available input, and was able to identify the threshold values of each input and the most important variables contributing to the roughness equation. The MARS technique allows easy interpretation of the relative importance of pavement condition variables, environmental factors and traffic for the overall fit.
引用
收藏
页码:51 / 55
页数:5
相关论文
共 50 条
  • [1] Rock slope damage level prediction by using multivariate adaptive regression splines (MARS)
    Erdik, Tarkan
    Pektas, Ali Osman
    [J]. NEURAL COMPUTING & APPLICATIONS, 2019, 31 (07): : 2269 - 2278
  • [2] Rock slope damage level prediction by using multivariate adaptive regression splines (MARS)
    Tarkan Erdik
    Ali Osman Pektas
    [J]. Neural Computing and Applications, 2019, 31 : 2269 - 2278
  • [3] Prediction of compaction parameters of coarse grained soil using multivariate adaptive regression splines (MARS)
    Khuntia, Sunil
    Mujtaba, Hassan
    Patra, Chittaranjan
    Farooq, Khalid
    Sivakugan, Nagaratnam
    Das, Braja M.
    [J]. INTERNATIONAL JOURNAL OF GEOTECHNICAL ENGINEERING, 2015, 9 (01) : 79 - 88
  • [4] Learning to rank by using multivariate adaptive regression splines and conic multivariate adaptive regression splines
    Altinok, Gulsah
    Karagoz, Pinar
    Batmaz, Inci
    [J]. COMPUTATIONAL INTELLIGENCE, 2021, 37 (01) : 371 - 408
  • [5] Application of multivariate adaptive regression splines (MARS) in precision agriculture
    Turpin, KM
    Lapen, DR
    Gregorich, EG
    Topp, GC
    McLaughlin, NB
    Curnoe, WE
    Robin, MJL
    [J]. PRECISION AGRICULTURE, 2003, : 677 - 682
  • [6] Use of Multivariate Adaptive Regression Splines (MARS) in the Performance Prediction of Anti-floating Anchors
    Shen, Hao
    Li, Jinhui
    Li, Pengxi
    Wang, Sixin
    [J]. INFORMATION TECHNOLOGY IN GEO-ENGINEERING, 2020, : 315 - 325
  • [8] Prediction of longitudinal dispersion coefficient using multivariate adaptive regression splines
    AMIR HAMZEH HAGHIABI
    [J]. Journal of Earth System Science, 2016, 125 : 985 - 995
  • [9] Multivariate Adaptive Regression Splines (MARS) approach to blast-induced ground vibration prediction
    Arthur, Clement Kweku
    Temeng, Victor Amoako
    Ziggah, Yao Yevenyo
    [J]. INTERNATIONAL JOURNAL OF MINING RECLAMATION AND ENVIRONMENT, 2020, 34 (03) : 198 - 222
  • [10] Using Multivariate Adaptive Regression Splines (MARS) to model body mass over time
    Uhl, Natalie M.
    Stull, Kyra E.
    [J]. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, 2015, 156 : 308 - 309