Automatic segmentation of the bones from MR images of the knee

被引:2
|
作者
Fripp, Jurgen [1 ]
Ourselin, Sebastien [1 ]
Warfield, Simon K. [2 ]
Crozier, Stuart [3 ]
机构
[1] CSIRO ICT Ctr, BioMedIA Lab, Bristol, Avon, England
[2] Childrens Hosp Boston, Harvard Med Sch, Boston, MA USA
[3] Univ Queensland, Sch ITEE, Brisbane, Qld, Australia
关键词
image segmentation; shape; bones;
D O I
10.1109/ISBI.2007.356857
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present and validate a hybrid segmentation scheme based around 3D active shape models, which is used to automatically segment the three bones in the knee joint. This scheme is automatically initialised using an affine registration to an atlas. The accuracy and robustness of the approach was experimentally validated using an MR database of 20 fat suppressed Spoiled Gradient Recall images. A median Dice Similarity Coefficient (DSC) of 0.89, 0.96 and 0.96 was obtained for the patella, tibia and femur which illustrates the accuracy of the approach. The robustness of this scheme to initialisation was validated by segmenting each knee image 19 times, each time using a different image in the database as the atlas. An overall segmentation failure rate (DSC < 0.75) of only 3.60% shows that the scheme was robust to initialisation.
引用
收藏
页码:336 / +
页数:3
相关论文
共 50 条
  • [21] Automatic Detection of Meniscal Area in the Knee MR Images
    Saygili, Ahmet
    Kaya, Heysem
    Albayrak, Songul
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 1337 - 1340
  • [22] Automatic segmentation of MR images of the developing newborn brain
    Prastawa, M
    Gilmore, JH
    Lin, WL
    Gerig, G
    MEDICAL IMAGE ANALYSIS, 2005, 9 (05) : 457 - 466
  • [23] Automatic Brain Tumor Detection and Segmentation in MR Images
    Zeljkovic, V.
    Druzgalski, C.
    Zhang, Y.
    Zhu, Z.
    Xu, Z.
    Zhang, D.
    Mayorga, P.
    2014 PAN AMERICAN HEALTH CARE EXCHANGES (PAHCE), 2014,
  • [24] Automatic Abdominal Aortic Aneurysm segmentation in MR images
    Martinez-Munoz, Sergio
    Ruiz-Fernandez, Daniel
    Jose Galiana-Merino, Juan
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 54 : 78 - 87
  • [25] Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images
    Jain, Saurabh
    Sima, Diana M.
    Ribbens, Annemie
    Cambron, Melissa
    Maertens, Anke
    Van Hecke, Wim
    De Mey, Johan
    Barkhof, Frederik
    Steenwijk, Martijn D.
    Daams, Marita
    Maes, Frederik
    Van Huffel, Sabine
    Vrenken, Hugo
    Smeets, Dirk
    NEUROIMAGE-CLINICAL, 2015, 8 : 367 - 375
  • [26] Automatic segmentation of cerebral ischemic lesions from diffusion tensor MR images
    Li, W
    Tian, J
    Dai, JP
    MEDICAL IMAGING 2004: IMAGE PROCESSING, PTS 1-3, 2004, 5370 : 1640 - 1649
  • [27] Automatic Segmentation of the Left Atrium from MR Images Via Semantic Information
    Deng, Chunhua
    Zhang, Xiaolong
    2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 3312 - 3316
  • [28] Evaluation of manual and automatic segmentation of the mouse heart from CINE MR images
    Heijman, Edwin
    Aben, Jean-Paul
    Penners, Cindy
    Niessen, Petra
    Guillaume, Rene
    van Eys, Guillaume
    Nicolay, Klaas
    Strijkers, Gustav J.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2008, 27 (01) : 86 - 93
  • [29] Texture enhanced Statistical Region Merging with application to automatic knee bones segmentation from CT
    Howes, Michael
    Bajger, Mariusz
    Lee, Gobert
    Bucci, Francesca
    Martelli, Saulo
    2021 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA 2021), 2021, : 339 - 346
  • [30] Articular Cartilage Segmentation in Noisy MR Images of Human Knee
    Hoang Vinh Tran
    Jiang, Danchi
    2012 CAIRO INTERNATIONAL BIOMEDICAL ENGINEERING CONFERENCE (CIBEC), 2012, : 146 - 149